
XCB: An X Protocol C Binding

Bart Massey Jamey Sharp
Computer Science Department

Portland State University
{bart,jamey}@cs.pdx.edu

October 6, 2001

Abstract

The standard X Window System binding for the C
programming language, Xlib, is a very successful
piece of software across a wide range of applica-
tions. However, for many modern uses, Xlib is not
an ideal fit: its size, complexity, difficulty of ex-
tension and synchronous interface are particularly
problematic.

The XCB “X Protocol C Binding”, currently under
development, is a response to these and other con-
cerns. XCB is intended to be a simpler and more
direct binding of protocol objects to C functions;
careful design of the XCB API and internal data
structures and thorough modularization provides a
solution that is size and time efficient, maintain-
able, easy to use both by single-threaded and multi-
threaded applications and easily extensible. Some
features of Xlib have been sacrificed in achieving
these goals, notably i18n support and convenience
buffering and caching features, but the cost will
likely be worth it for toolkit developers and for
those looking to write specialized applications lay-
ered atop the XCB API.

1 Xlib

Perhaps the oldest software in modern X Window
System [SG86] distributions is Xlib [SG92]: the
oldest files in the current XFree861 distribution
have a 1985 copyright. Xlib has played an impor-
tant role in the development of the X Window Sys-
tem in several ways: as the standard binding of X

1http://xfree86.org

protocol requests and responses to an API for the C
programming language [KR78]; as the repository
of a number of performance optimizations of the C
API, such as caching and grouping of requests; as
a base for GUI toolkit implementations; and as a
focal point for convenience routines and extensions
necessary to build functional, internationalized and
standards-conforming standalone programs without
toolkit support.

Unfortunately, these roles have been somewhat
contradictory, and the long history of Xlib has not
generally worked in its favor. The current Xlib suf-
fers from a number of outright defects.

1.1 Xlib Features

Xlib has a number of notable features, resulting
both from an excellent initial design and the ma-
turity attained through 15 years of large-scale use.
Perhaps the most important is its completeness: the
XFree86 Xlib release includes support for every
protocol request provided by X11R6 and libraries
for every protocol extension request supported by
XFree86, as well as support for a rich set of conve-
nience features. Among these convenience features
are automatic marshaling of multiple requests (for
example, combining a series of DrawPoint re-
quests into a PolyPoint request), automatic de-
composition of large requests and tools for auto-
matic input canonicalization and internationaliza-
tion (i18n) of both input and output.

The large-scale usage of Xlib has also made it a
thoroughly use-tested piece of software. It has been
carefully maintained, and its reliability is currently
quite high. In particular, its code embodies many



clever solutions to subtle problems in X protocol
interaction. Since the protocol has co-evolved with
Xlib, both have been adjusted to work well together.

The X protocol is bandwidth efficient. Requests,
replies and events are parsimonious in size. The
simple representations of the protocol allow most
transactions to be easily compressed by a general
purpose method such as gzip [Gai93], further im-
proving performance. Xlib contains a number of
optimizations designed to improve this bandwidth
efficiency. Notable among these are buffered out-
put of requests2 and a reasonable amount of local
caching of server state.

The choice of the C programming language as the
standard binding language for X clients was a natu-
ral one, given the C server implementation and the
efficiency and accessibility of the language. It has
since proven a fortuitous decision. Because most
other programming languages provide an interface
to C source or binaries, Xlib has been used as a
binding by toolkits and programs written in lan-
guages ranging from C++ and Java to Scheme and
Prolog.

1.2 Xlib Areas For Improvement

While Xlib is highly successful, there are still areas
that could use improvement. Xlib is arcane: even
experienced X programmers must frequently refer
to the documentation in order to use it successfully.
This is due to several factors: first, the difficulty of
building a transparent API in C; second, accretion;
but third and especially the fact that Xlib tries to
be a general purpose interface suitable for writing
everything from small toolkit components to large
applications directly.

Because of XLib’s generality and emphasis on con-
venience functions, the library is complex and over-
sized; little of its code is regularly used by applica-
tions. Work by Jim Gettys3 has recently reduced

2Xlib contains a support for a timer that periodically flushes
the output stream to reduce latency. While XCB takes the po-
sition that this is an activity better performed by the API client,
which may be able to do a better job with reduced complexity,
this mechanism in any case does help control request latency.

3Personal communication, June 2001.

this problem, but ultimately it seems difficult to se-
riously shrink Xlib without significantly changing
the API and excising substantial parts of its func-
tionality.

Because of the size, complexity and ubiquity of
Xlib, it is quite difficult to maintain, especially to
extend. Potential authors of new X protocol exten-
sions are often deterred not by the difficulty of the
server-side work, but by the difficulty of adding li-
brary support for the extension: there is little sup-
port in Xlib for extensions, so a great deal of new
code typically needs to be written on the client side.
This may be a major factor in the dearth of new ex-
tensions over the last 10 years or so.4

Xlib can also be difficult to use. For example, many
X protocol items are XIDs, small integers. Unfortu-
nately, C provides no way to declare incompatible
types isomorphic to small integers. This occasion-
ally leads to type errors in Xlib usage that are not
statically detected: passing a window ID where a
font ID was required, for example. The use of C
structure and union types to “wrap” small integers
can solve this problem, but in 1985 a few C compil-
ers still had trouble treating structures in the largely
first-class fashion required by the standard: struc-
ture return was particularly problematic, and some
compilers even had problems with structure copy-
ing.

As another example, user memory management of
Xlib data is complicated by a couple of factors.
First, because the XAlloc() and XFree() inter-
faces are used instead of their normal malloc()
and free() counterparts, traditional memory al-
location debugging and leak-detection tools are dif-
ficult to use to detect and diagnose Xlib usage er-
rors. This may be one of the reasons why X appli-
cations so commonly leak storage. Another is that
Xlib routines occasionally return allocated storage
containing pointers to other unallocated storage: it
is the responsibility of the Xlib user to free the ref-
erents before freeing the referencing block, by call-
ing the appropriate destructor routine5 rather than
XFree(). Needless to say, this is error-prone, and

4Keith Packard, personal communication, August 2001.
5Often the destructor’s name contains “destroy” rather than

“free”, adding to the confusion.



the resulting errors are difficult to detect.

The design goals of Xlib are somewhat contradic-
tory. Modern toolkits such as Gtk and Qt eschew
most of the special features of Xlib, such as its com-
plicated input model and i18n semantics, and use
just the protocol binding. This is not merely waste-
ful: interference from Xlib also makes it difficult
to do certain styles of toolkit optimization, such as
latency hiding and the use of multiple threads.

While Xlib attempts to be re-entrant, its complexity
and the “retrofitted” nature of the reentrancy sup-
port make exploiting this feature difficult. In par-
ticular, the Xlib API is not easily suited to thread-
based use. For example, it is difficult to obtain the
sequence number of a request in a multi-threaded
environment, as the sequence counter may be ad-
vanced by a second request between the time the
first request is sent and the counter is queried. In
addition, many Xlib calls that retrieve information,
such as GetNextEvent, come in two basic forms: a
blocking form that locks critical data structures and
a non-blocking form that is subject to races with
other threads.

While Xlib and the protocol are bandwidth-
efficient, Xlib encourages a style of programming
that tends to have high latency. Because Xlib re-
quests requiring a reply are generally synchronous,
blocking until the reply is available, Xlib often
blocks for a full round trip time. This is not gen-
erally an issue when the X connection is local, and
even for remote connections a round trip can often
be avoided due to XLib’s extensive caching. How-
ever, Packard’s recent critique of LBX [Pac01] has
shown that latency, rather than bandwidth, is the
major contributor to poor remote performance of X
applications, and that Xlib is a real contributor to
this excess latency.

2 XCB

When faced with multiple conflicting design goals
and excessive design complexity, one good design
solution is often to modularize the implementa-
tion, separately implementing each desired piece
of functionality. The design of XCB takes this ap-

proach. XCB is intended to be a simple and direct
binding of X protocol transactions to C language
function calls, with the minimum amount of ma-
chinery necessary to achieve this aim.

It is assumed that the principle clients of XCB
will be of two types: toolkits intended for higher-
level program implementation and small libraries
intended to ease the direct use of XCB. Thus, cer-
tain constraints of the Xlib design disappear. Fea-
tures such as i18n and most caching, that can be bet-
ter managed at a higher layer, may be eliminated.
Controlling the syntactic details of the API inter-
face also becomes slightly less critical (although the
current design seems rather pleasant in this regard).

2.1 XCB Structure

The basic structure of XCB is in two layers, as illus-
trated in Figure 1. A lower layer, XCB Connection,
supports the establishment of an X server con-
nection and handles buffering and batching of re-
quests and responses. XCB Connection exports
a simple API to the upper XCB Protocol layer.
XCB Protocol, in turn, provides a quite direct C
API for the core X Protocol. The ability for ex-
tension client code to sit atop XCB Connection, to-
gether with the automatic code generation features
discussed in Section 2.3 below, should make adding
extension support quite easy.

A key feature of XCB is the thread-safety of the en-
tire API. This is implemented via the locking mech-
anisms of POSIX Threads [NBF96]. Specifically,
each connection is locked against concurrent ac-
cess with a pthread mutex and blocking during
API calls is supported by pthread cond condi-
tion variables.

The XCB API allows (indeed, encourages) a style
of interaction in which one thread makes requests
and handles replies and another thread processes
events. The availability of locking mechanisms
for thread safety was difficult to ensure 15 years
ago. Now that threads are widely available to C
programmers, they should probably be taken ad-
vantage of: the standard window systems in the
Smalltalk and Java environments, among others,
have exploited this approach with notable suc-



XCB Connection

XCB

Client

Threads

X Server

XCB Protocol

API Requests

Inter-Layer Communication

X Protocol

API

Per-Connection Data Structures

Figure 1: XCB structure and usage.

cess. The XCB API also permits a more tradi-
tional single-threaded “event loop” style: this en-
ables single-threaded usage of XCB, and should al-
low re-implementation of the Xlib API atop XCB if
desired.

Central to the XCB API is the use of “reply cook-
ies” to permit latency hiding. Protocol requests re-
quiring a reply do not block. Instead of returning
reply data that is not yet available, the XCB non-
blocking request returns a reply cookie, that can be
converted into the reply data on demand, blocking
if it is not yet available. This mechanism eases la-
tency hiding without greatly distorting expected C
API calling conventions, easing the X latency prob-
lems described in Section 1.2.

2.2 XCB Data Structures

XCB has a reasonably simple set of data structures
and interfaces that interact to provide the desired
functionality. Figure 2 gives an overview of these
data structures and their interaction; the rest of this
section attempts to describe some of the more inter-
esting details.

The fundamental unit of interaction in XCB is the
server connection. For thread safety, there are no
global variables in XCB: all state for a connection

Connection
Lock

Output
Buffer

Atom
Cache

Sequence #

Current Data

State and
Locking

Reply Record

Reply list

Figure 2: XCB data structures.

is stored in an opaque, locked connection structure.
Elements of the connection structure include

• The connection mutex.

• The socket for the connection.

• The current request sequence number.

• The request queue, a simple character buffer
for outgoing requests.

• The reply list, that tracks the state of pending
requests requiring a reply.

• The event queue, containing processed but un-
consumed events.

• A dictionary to cache interned atoms. This is
currently the only non-mandatory client-side
caching performed by XCB: it avoids a com-
mon cause of high latency and bandwidth, and
is easy to add. (Connection startup data is also
cached, but this is essentially mandatory.)

For user compatibility with Xlib applications, a
couple of its external formats are supported, namely
the DISPLAY and XAUTHORITY environment
variables and the .Xauthority file. Nonethe-
less, the XCB notion of a connection is somewhat



different than that of Xlib. In particular, there is ex-
pected to be just one connection per display: there
is no special notion of a “screen” in XCB outside
of the root window concept supported by the proto-
col.6

The current XCB implementation supports TCP/IP
and UNIX-domain sockets: obtaining a socket is
treated separately from creating a connection, so
other types of file descriptor may be used as well,
although some applications may require sockets
with specific capabilities (such as non-blocking
I/O).

The request queue is, as noted above, a simple
character FIFO used to hold formatted requests for
grouping into larger packets via a mechanism of
write batching. (This is necessary for XCB TCP/IP
sockets, since the Nagle mechanism [Nag84] is
turned off: a latency-reducing technique borrowed
from Xlib.) There are three conditions under which
the lower layer will flush the request queue:

1. The request queue is about to become over
full.

2. The user has requested a flush via the
XCB Protocol API.

3. The user has requested the reply to a request
enqueued but not yet delivered.

This third reason is the most interesting, reflecting
the fact that, unlike in Xlib, batching a request re-
quiring a reply does not require flushing the current
buffer.

The reply list of an XCB connection is a reflection
of XCB’s asynchronous reply delivery: replies ar-
rive in request order but may be accessed out-of-
order. The reply list is a simple singly-linked list of
malloc-ed reply records: this data structure suf-
fices since it is expected that a small number of
replies will normally be outstanding. A reply record
is created and placed in the reply list when a request
requiring a reply is enqueued. The reply record will

6In fact, the screen portion of the DISPLAY environment
variable is reported to the client by the XCB convenience rou-
tine, but is otherwise ignored.

remain on the list until the reply is received and de-
livered to the user, at which point it will be freed by
the upper layer of XCB. Thus, at most one thread
can receive the reply to a request (although it need
not be the thread from which the request was is-
sued). Reply records that are of no further interest
to the XCB user may (and should) be discarded by
sequence number via the XCB Protocol API.

Each reply record contains just a few pieces of crit-
ical information:

• The sequence number of the request.

• An indication of the request’s status. A request
in the list is either pending a reply, pending
delivery of a reply to the XCB user, or both.

• A pointer that points to one of two quanti-
ties, depending on whether a reply has been
received.

– If a reply is pending, the reference is to
a block of request-specific data allocated
by XCB Protocol and needed to con-
struct the result delivered to the user (for
example, the address of a user-supplied
buffer into which a portion of the reply
is to be delivered).

– Once the reply has been received, this
pointer will be converted by the upper
layer to a pointer to the reply itself,
awaiting delivery to the user.

• A condition variable on which at most one user
thread may block when requesting a result be-
fore the reply has been received. The user
thread will then be awakened when the result
it desires has been generated from a received
reply.

In addition to requiring careful management of
replies, the asynchrony of reply and event deliv-
ery also mandates the implementation of a simple
event queue. In order to receive a specific reply de-
sired by the user, the lower layer may have to read
past event responses sent by the server between the
time the request was received and the reply sent.
For a single-threaded XCB client, this presents a



problem. XCB cannot block until the reply is read
from the input stream: it may deadlock the client.
However, a single-threaded XCB client cannot pro-
cess intervening events until control has been re-
turned to it. While it would be possible to have the
XCB reply-access API return an EWOULDBLOCK-
like value, this would complicate both the API and
the client. Instead, XCB enqueues events in a sim-
ple FIFO limited only by available memory. For a
multi-threaded client, events will be delivered to a
waiting event-handling thread rather than being en-
queued.

The reply cookies described in Section 2.1 are im-
plemented as transparent structures containing a
single element: the sequence number of the refer-
enced request. There is one such structure for each
expected reply type, which helps solve the type-
compatibility problem described in Section 1.2.
Because the sequence number of a request is visible
in the reply cookie, the application can correlate a
server-side error with the request that produced it.
For this reason, as well as for uniformity, requests
not requiring a reply also return a reply cookie.
However, this cookie is of a structure type for which
no further processing is available in the API. Hence
erroneously expecting a reply to a request that will
not produce one is an error that should be detected
at compile time.

One subtlety of the X protocol is that many re-
quests are “pseudo-synchronous”. Instead of re-
turning a reply (and thus requiring a round trip)
with the server-side ID of a newly created resource
such as a window or font, a numeric ID, known
as an XID, is created on the client side and passed
to the server with the request. A careful specifica-
tion of the ID space ensures that the ID is globally
unique for the server. This latency-hiding optimiza-
tion is concealed by Xlib, where XID generation is
implicit and pseudo-synchronous and synchronous
API requests are syntactically indistinguishable.

XIDs are explicitly requested as part of the XCB
API: a created XID is wrapped in a structure or
union and must be passed with the correct type to
the XCB request API. An interesting type-safety is-
sue arises here: some X protocol requests accept
“subtyped” requests. For example, some protocol

typedef struct XCB_Pixmap {
int xid;

} XCB_Pixmap;

typedef struct XCB_Window {
int xid;

} XCB_Window;

typedef union XCB_Drawable {
int xid;
XCB_Pixmap pix;
XCB_Window win;

} XCB_Drawable;

Figure 3: Declaration of the pixmap, win, and
drawable datatypes.

requests require the XID of a window, some the
XID of a pixmap and some the XID of a “draw-
able”, which will denote either a window or a
pixmap.7 Since the protocol itself deals with win-
dow and pixmap types as XIDs, there is no type
issue for the server, which correctly tracks types
at runtime. The static typing issue is a bit harder,
given the limitations of the C type system. XCB
implements the drawable XID type as shown in Fig-
ure 3. The user is required to pass either draw-
able, drawable.win, or drawable.pix to
the XCB API as appropriate. This provides a stat-
ically type-safe interface, without greatly incon-
veniencing the XCB user. Note that the ANSI
C [ANS] union semantics essentially guarantee
that the correspondence between the various xid
fields will hold.

As a general rule, XCB tries not to provide trans-
parent client-side caching of server-side data: do-
ing so is normally difficult, expensive and of little
benefit to most applications. However, one dataset
that is transparently cached by XCB is the mapping
from strings to interned “atoms”, a globally unique
server-side mapping which is cooperatively set up
by clients. The atom cache is very effective in re-
ducing latency and has low overhead. In addition,
because it was explicitly designed to be cached on

7Similarly, there is exactly one X protocol request that ac-
cepts either a font or a GC—a “fontable”.



the client side, the complexity of correctly main-
taining a client side cache of the interned atom table
is low.

2.3 The XCB API

The XCB API consists of several kinds of calls:

• Creation functions for such things as connec-
tions and XIDs. These functions return typed
values.

• Non-blocking requests, for example

XCB_Void_Cookie
XCB_DrawPoint(

XCB_Connection c,
XCB_Drawable d,
int x, int y)

• Blocking requests, for example

XCB_Window_Cookie
XCB_GetInputFocus(

XCB_Connection c)

• Extraction functions for retrieving and con-
verting reply data, for example

XCB_XID
XCB_GetWindowID(

XCB_Window_Cookie c)

• Response processing calls to support re-
trieving events and errors. The XCB
event-processing interface is via a call to
XCB Wait Event(): it will block until an
event is available and return it.

• A number of miscellaneous primitives. For
example, single-threaded X applications of-
ten need to be able to call select() on the
socket for a protocol connection in order to be
able to multiplex their inputs correctly. XCB
thus supports retrieving the socket underlying
a connection, appropriately manipulated to be
suitable for select().

The connection creation interface to XCB consists
of several routines. First, convenience functions
are provided to obtain a file descriptor attached to
a server via TCP/IP or UNIX-domain networking.
This file descriptor, or any other file descriptor of a
server connection, is then passed to a second rou-
tine which takes care of initializing the connection
data structures and performing the initial protocol
handshake. This approach is convenient for such
tricks as running X directly over a serial line, and
helps to isolate XCB from long-term changes in X
and networking environments and conventions.

A principle goal of XCB is to provide as
lightweight a layer atop the protocol as reasonably
possible. Simply marshaling the approximately 120
requests of the X protocol and their underlying data
structures should be a large enough job for a sin-
gle library. The bulk of the XCB implementation
consists of request and response marshaling stubs.
The approach taken by Xlib to these stubs is a tradi-
tional one: they are individually hand-coded in C.
XCB takes a metalevel approach: a stub descrip-
tion processor implemented using the m4 [KR77]
macro preprocessor translates custom stub descrip-
tions written in a specialized macro language into C
code automatically. This approach has several ad-
vantages: it helps reduce the likelihood of defects in
the stubs, allows automatic generation of documen-
tation and is easier to read and understand than C
code. Perhaps the most important advantage, how-
ever, is the reduced programmer burden: this ap-
proach has been essential to a timely implementa-
tion of XCB, and should make it much easier to im-
plement extension libraries atop XCB Connection.

2.4 XCB In Action

It is interesting to trace the flow of a a client request
and response through the XCB machinery. Con-
sider the case of a client request to identify the win-
dow with the current input focus. Figure 4 illus-
trates the flow of data and control through XCB.
The chains of arrows in the figure show the flow of
control of a single thread.

First, the client issues an XCB GetInputFocus
API request with the target connection as an argu-
ment. This API call returns immediately, deliver-



Request is enqueued

Reply arrives

Result is constructed, delivered

Request is delivered to server

Client makes request Client requests result Client uses resultClient request returns

Reply record is constructed

Figure 4: Flow of data and control through XCB.

ing a reply cookie of type XCB Window Cookie
to the client. The upper layer of XCB delivers this
cookie by asking the lower layer to allocate a reply
record with the current sequence number. The re-
quest is also encoded at this time and placed in the
lower layer’s output buffer for eventual delivery. Fi-
nally the cookie containing the sequence number is
returned to the client.

The pending request is eventually shipped to the
X server, when the buffer is flushed as described
in Section 2.2. By this time, the server may have
generated and shipped several events, which are en-
queued ahead of the server-generated reply. When
the user calls XCB GetWindowID() with the reply
cookie as an argument, the lower layer uses the se-
quence number of the reply cookie to index the re-
ply list, eventually finding the reply record. It then
notes that no reply has yet been received from the
server. Initiating a blocking read from the server to
obtain the data, the lower layer enqueues the events
read from the connection, then reads the reply. The
resulting reply buffer, together with the connection
socket, is passed up to the XCB upper layer, which
assembles the requested window ID from the given
data. The result is placed in the reply cookie and
the blocked request returns to the upper layer. The
upper layer removes the relevant reply from the re-
ply record, frees this record and returns the window
requested by the XCB GetWindowID() call.

Alternatively, the reply may be received before
the result is requested. In this case, the result is
nonetheless constructed as the reply is received,
and delivered to the client as requested. The reply
record tracks the current state, recording whether a
reply has been received, and whether a result has
been requested.

3 Xlib and XCB Compared

Having discussed both Xlib and XCB in some de-
tail, it is useful to summarize some of the com-
parisons and contrasts between the two. XCB in-
troduces several novel features, borrows some nice
features from Xlib, and foregoes some Xlib func-
tionality.

Principal new features of XCB include latency hid-
ing through reply cookies, amenability to use by
threaded clients and better static typechecking. Be-
cause of its extensive use of structure and union
types, XCB interfaces are well protected against pa-
rameter mismatches. In general, the syntactic and
semantic regularity of XCB, at least in contrast to
Xlib, should greatly ease its use.

A variety of good ideas from Xlib were incorpo-
rated into XCB. The buffering of output to form
large packets increases effective bandwidth and re-
duces network load. Similarly, doing large reads on
connection input when possible may greatly reduce
syscall overhead in the presence of large numbers
of events. XLib’s sequence number management is
quite clever: in particular, the use of a dummy re-
quest requiring a reply to both skip a sequence num-
ber and establish a synchronization point is imitated
by XCB in sequence number management. XLib’s
proviso for direct select() access to the con-
nection file-descriptor has proven to be important
for single-threaded applications and was included
in XCB for this reason.

Some features of Xlib, including some quite useful
ones, were dropped on the theory that they could
not carry their own weight in implementation size
and complexity. Notably, XCB is a fairly direct
binding to the X protocol: it does not send multi-
ple requests for large inputs, directly marshal mul-
tiple results, or cache request or reply information



locally (with the exception of the atom cache). The
complicated input processing of Xlib is not pro-
vided, nor is any direct support for i18n features.

Perhaps the most notable feature of Xlib missing in
XCB is Xlib compatibility in the API: it would be
nice to be able to achieve some of the XCB gains
by relinking existing applications. While, for the
reasons described immediately above this is not a
feasible goal for XCB itself, it is believed that with
reasonable effort a lightweight Xlib compatibility
layer could be placed atop XCB.

4 Status and Future Work

An XCB code base is currently under development.
Simple examples work, but much work remains to
complete the implementation. Once the implemen-
tation of the core protocol is complete, work will
commence on the implementation of many of the
X Consortium and XFree86 extensions. Finally,
the longer-term goal of layering font and render-
ing support atop XCB should eventually lead to an
Xlib compatibility library, a redesigned C interface
for standalone programs and a toolkit.

Availability

When complete, the XCB implementation will be
made freely available under the XFree86 License.
More information should appear on the web at
http://xcb.cs.pdx.edu in the near future.

Acknowledgments

The author gratefully acknowledges the advice and
assistance of Keith Packard in the analysis, design,
and implementation of XCB.

References

[ANS] X3.159-1989.

[Gai93] Jean-loup Gailly. Gzip: the data com-
pression program, 1.2.4 edition, July
1993.

[KR77] Brian W. Kerninghan and Dennis M.
Ritchie. The M4 Macro Processor.
AT&T Bell Laboratories, 1977. Unix
Programmer’s Manual Volume 2, 7th
Edition.

[KR78] Brian W. Kerninghan and Dennis M.
Ritchie. The C Programming Language.
Prentice Hall, 1978. ISBN 0-13-110163-
3.

[Nag84] John Nagle. RFC896: Congestion con-
trol in IP/TCP internetworks. RFC
896, Ford Aerospace and Communica-
tions Corporation, 1984.

[NBF96] Bradford Nichols, Dick Buttlar, and
Jacqueline Proulx Farrell. Pthreads Pro-
gramming, A POSIX Standard for Better
Multiprocessing. O’Reilly & Associates,
Inc., first edition, September 1996.

[Pac01] Keith Packard. An LBX postmortem.
http://xfree86.org/˜keithp/
talks/lbxpost, January 2001.

[SG86] Robert W. Scheifler and Jim Gettys. The
X window system. ACM Transactions on
Graphics, 5(2):79–109, April 1986.

[SG92] Robert W. Scheifler and James Gettys. X
Window System. Digital Press, third edi-
tion, 1992.


