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User Guide for the X Test Suite

1. Introduction

This document is a guide to installing and running X Version 11 Release 6.1 of the X Test
Suite. In order to do this, please work through all of the steps described in this guide in
order. Information on the content, purpose and goals of the X Test Suite is found in a
series of appendices, which follow the installation instructions.

Please read the "Release Notes for the X Test Suite", which describe particular features of
this release.

Further information, which would be required by a programmer to modify or extend the
X Test Suite, is contained in a separate document, "Programmers Guide for the X Test
Suite".

Included in this release is a version of the "Test Environment Toolkit" (TET). This is
required to build and execute the X Test Suite. The "Test Environment Toolkit" is a
software tool developed by X/Open, UNIX International, and the Open Software
Foundation. More details of the TET appear in appendix E.

The contents of this document cover the installation and use of the included version of the
TET.
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2. Preparation

This section of the User Guide describes how to check that the system on which you want
to build the X Test Suite has the required utilities and sufficient disc space, how to check
the version of the X Window System1 you wish to test, and how to extract the software
from the supplied distribution media.

2.1 Utilities

The X Test Suite assumes that the following utilities are available on your system.

2.1.1 Bourne shell

The configuration and building stages include example instructions which have only been
tested using the Bourne shell.

The build configuration file sets the SHELL variable so that the Bourne shell will be used
by make. No other settings for this variable have been tested.

2.1.2 make

The building stages assume the existence of make.

2.1.3 awk

The report writer rpt uses awk.

2.1.4 Compiler

A C compiler and link editor are required. The X Test Suite assumes that when these
utilities execute successfully, they return a value of zero. The names of these utilities
may be set in build configuration parameters.

2.1.5 Library archiver

A library archiver and a means of ordering the libraries are required. The ordering
software may be part of the library archiver, the ranlib utility, or the utilities lorder
and tsort. The names of these utilities may be set in build configuration parameters.

2.1.6 File utilities

The X Test Suite uses utilities to copy, move, remove and link files during the build
stages. The names of these utilities may be set in build configuration parameters.

2.2 Checking your version of the X Window System

If your version of the X Window System supports the XTEST extension, you will be able
to perform tests for some assertions which are otherwise untestable. The XTEST
extension has been produced by MIT since the initial release of X11R5, based on a
specification2 produced by UniSoft. The extension provides access to the X server to
enable testing of the following areas of the X Window System:

1. The X Window System is a trademark of the Massachusetts Institute of Technology.
X Window System Version 11 Release 4 is abbreviated to X11R4 in this document.
X Window System Version 11 Release 5 is abbreviated to X11R5 in this document.

2. Drake, K.J., “Some Proposals for a Minimal X11 Testing Extension.” UniSoft Ltd. June 1991
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— Those which rely on the simulation of device events.

— Those requiring access to opaque client side data structures.

— Those requiring information on the cursor attribute of windows.

Before you configure the X Test Suite, you should determine whether your version of the
X Window System includes the XTEST extension, and, if so, whether you wish to
configure and build the X Test Suite to enable these features to be tested.

There are two things to check:

1. Check whether your X server supports the XTEST extension. This can be done by
printing the list of extensions available in your X server using the X utility
xdpyinfo. Note - the name of the extension should be printed exactly as in this
User Guide - there are other testing extensions for X which are not compatible
with the XTEST extension.

2. Check whether you have the required libraries to link the test suite clients so as to
access the XTEST extension. All test suite clients must be linked with Xlib, which
is normally named libX11.a. If you want to access the XTEST extension, you
will need two further libraries. These are the XTEST library (normally named
libXtst.a) and the X extension library (normally named libXext.a).

2.3 Installing the X Test Suite

Change to the directory in which you wish to install the distribution. Set an environment
variable TET_ROOT to the full path name of that directory.

Load the software from the media supplied into that directory. The precise commands
you should use depend on the format of the media supplied to you, the utilities available
on your system, the options supported by the utilities, and the names of the tape devices
on your system. See the Release Notes for more information about installation.
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3. Configuring the X Test Suite

This section contains instructions on all the procedures you should go through in order to
configure the X Test Suite, before attempting to build it.

There is a description of the TET build tool in section 3.1, and the relationship between
the TET build scheme and the Imake scheme in section 3.2.

Sections 3.3 and 3.4 contain details of build and clean configuration parameters, which
you should edit to reflect the configuration of the target platform on which the X Test
Suite is to be built.

Section 3.5 contains details of source files and include files which contain system
dependent data which cannot be specified via the build configuration parameters. You
should check these files before configuration and if necessary edit them to be suitable for
your system.

3.1 The TET build tool

The TET provides a scheme to execute a build tool, which builds the tests in the X Test
Suite. The execution of the build tool in the TET is controlled by a small number of TET
configuration parameters, contained in a build configuration file. These are described in
section 3.3.1.

A build tool has been developed and is provided as part of the X Test Suite. This is a
shell script named pmake, which is supplied in the directory
$TET_ROOT/xtest/bin. The shell script pmake is an interface to the make system
command, and when invoked from the TET it builds a test using the rules provided in a
Makefile.

Each Makefile in the X Test Suite is written portably, using symbolic names to
describe commands and parameters which may vary from system to system. The values
of these symbolic names are all obtained by pmake from additional parameters in the
build configuration file which are described in sections 3.3.2-3.3.7.

The pmake utility may be invoked directly from the shell, as well as via the TET, to build
individual parts of the X Test Suite. This is described further in subsequent sections of
this guide.

There is also a clean tool pclean which is an interface to the system make clean
system command. This uses parameters in a clean configuration file.

3.2 Relationship between TET build scheme and Imake

The TET is designed to provide a simple and self contained interface to configure and
build tests. The X Test Suite can be configured and built with no specialised knowledge
of the X Window System beyond that contained in the X Test Suite documentation, and
using a limited set of commonly available system commands. The only information
required to configure and build the X Test Suite is the location of the X Window System
Xlib and include files.

The X Window System itself includes a configuration scheme which is known as Imake.
This uses a utility imake supplied as part of the X Window System to create
Makefiles from portable description files called Imakefiles.

If you are familiar with the Imake scheme, and have used it to configure and build the

- 4 -



User Guide for the X Test Suite

X Window System on the platform being used to build the X Test Suite, you may be able
to set a limited number of the TET build configuration variables described in section 3.3
to the same value you used for an Imake variable. Where this is possible, the name of
the corresponding Imake variable is cross referenced.

3.3 Build configuration parameters

All build configuration parameters are contained in a configuration file that forms part of
the TET. This file should be edited to reflect the configuration of the target machine. The
file

$TET_ROOT/xtest/tetbuild.cfg

contains all the parameters that are needed to build the X Test Suite. The parameters are
grouped in seven sections within the configuration file.

3.3.1 Configuration Parameters defined by the TET

None of these parameters require changing. They are already set to defaults which are
correct for the X Test Suite.

TET_BUILD_TOOL
The name of the program that the TET will execute in build mode.

You should use the pmake command that is supplied in the directory
$TET_ROOT/xtest/bin.

Eg: TET_BUILD_TOOL=pmake

TET_BUILD_FILE
Any flags required by the build tool. This parameter should be empty.

Eg: TET_BUILD_FILE=

TET_CLEAN_TOOL
The name of the program that the TET will execute in clean mode.

You should use the pclean command that is supplied in the directory
$TET_ROOT/xtest/bin.

Eg: TET_CLEAN_TOOL=pclean

TET_CLEAN_FILE
Any flags required by the clean tool. This parameter should be empty.

Eg: TET_CLEAN_FILE=

TET_OUTPUT_CAPTURE
This flag is used by the TET to enable the output from the build tool to
be saved and copied into the journal file. This line should not be
altered.

3.3.2 Configuration for system commands

In this section the names of system commands are specified.
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SHELL The following line should cause the Bourne shell to be used by make.

Eg: SHELL=/bin/sh

CC A command to invoke the C compiler.

Eg: CC=cc

Imake variable: CcCmd

RM A command to remove a file without interactive help.

Eg: RM=rm -f

Imake variable: RmCmd

AR A command to generate a library archive.

Eg: AR=ar crv

Imake variable: ArCmd

LD A command to link object files.

Eg: LD=ld

Imake variable: LdCmd

LN A command to make hard links.

Eg: LN=ln

NB: This does not correspond to the Imake variable: LnCmd

RANLIB If the system supports a command to order library archives into
random access libraries, then set the parameter to that command.
Otherwise it should be set to echo (or a command that does nothing).

Eg: RANLIB=ranlib

Imake variable: RanlibCmd

TSORT Set to cat if AR was set to a command which inserts a symbol table
in the library archive, or if RANLIB was set to a command which
creates a random access library, otherwise set to tsort.

LORDER Set to echo if AR was set to a command which inserts a symbol table
in the library archive, or if RANLIB was set to a command which
creates a random access library. otherwise set to lorder.

CP A command to copy files.

Eg: CP=cp

Imake variable: CpCmd

CODEMAKER A utility to produce C source files from dot-m files. The supplied
utility mc should always be used. This line should not be altered.

Eg: CODEMAKER=mc
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3.3.3 Configuration for the TET

This section contains the locations of various parts of the TET. Usually only the first four
parameters will need changing, unless files have been moved from their default locations.

TET_ROOT The directory that contains all the files in the X Test Suite. This
should be set to the path to which TET_ROOT was set (see the section
entitled "Installing the X Test Suite"). It must be written out as a full
path without using any variable notation.

TETBASE The directory that contains all the files in the TET system. This is used
for convenience in defining the other directories. This should be set to
${TET_ROOT}/tet.

PORTINC An option that can be given to the C compiler that will cause it to
search all directories that are required to allow portability to systems
that do not support POSIX. Should be empty for POSIX systems. If
compiling on a BSD system using the supplied compatibility library,
then the following line should be used. (See section entitled "The
portability library").

Eg: PORTINC=-I${TET_ROOT}/port/INC

PORTLIB A library containing POSIX.1 and C library functions that are not
supplied by the system. This should be empty for a POSIX system. If
compiling on a BSD system using the supplied compatibility library,
then the following line should be used. (See section entitled "The
portability library").

Eg: PORTLIB=${TET_ROOT}/port/libport.a

TETINCDIR The directory containing the TET headers.

Eg: TETINCDIR=${TETBASE}/inc/posix_c

TETLIB The directory containing the TET library.

Eg: TETLIB=${TETBASE}/lib/posix_c

TCM The Test Control Manager. This is part of the TET. It is an object file
that is linked with each test.

Eg: TCM=${TETLIB}/tcm.o

TCMCHILD The Test Control Manager. This is part of the TET. It is an object file
that is linked with each program that is executed within a test by
tet_exec().

Eg: TCMCHILD=${TETLIB}/tcmchild.o

APILIB The TET API library.

Eg: APILIB=${TETLIB}/libapi.a
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3.3.4 Configuration parameters for the X Test Suite

Only the first two of these parameters require changing unless directories have been
moved from their default locations.

XTESTHOST The name of the host on which test suite clients are to be executed.
This may be set to the value returned by a command which can be
executed using the PATH you have set on your host, or may be set to a
specific name. This is used to produce a resource file named
.Xdefaults-$(XTESTHOST) in the test execution directory. The
resource file is created when building the test for XGetDefault. This
parameter is only used in the Makefile of the test for XGetDefault.

Eg. XTESTHOST=‘hostname‘

Eg. XTESTHOST=‘uname -n‘

Eg. XTESTHOST=triton

XTESTFONTDIR The directory in which to install the test fonts.

Eg: XTESTFONTDIR=/usr/lib/X11/fonts/xtest

XTESTROOT The directory that is the root of the X Test Suite.

Eg: XTESTROOT=${TET_ROOT}/xtest

XTESTLIBDIR The directory containing libraries for the X Test Suite.

Eg: XTESTLIBDIR=${XTESTROOT}/lib

XTESTLIB The xtest library. This library contains subroutines that are common to
many tests in the X Test Suite.

Eg: XTESTLIB=${XTESTLIBDIR}/libxtest.a

XSTLIB The X Protocol test library. This library contains subroutines that are
common to many tests in the X Protocol section of the X Test Suite.

Eg: XSTLIB=${XTESTLIBDIR}/libXst.a

XTESTFONTLIB The fonts library. This library contains font descriptions that are
common to many tests in the X Test Suite.

Eg: XTESTFONTLIB=${XTESTLIBDIR}/libfont.a

XTESTINCDIR The xtest header file directory. This directory contains headers that are
local to the X Test Suite.

Eg: XTESTINCDIR=${XTESTROOT}/include

XTESTBIN The xtest binary file directory. This directory contains utility programs
that are used by X Test Suite.

Eg: XTESTBIN=${XTESTROOT}/bin
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3.3.5 System Parameters

Location of system libraries and include files.

SYSLIBS Options to cause the C compiler to search any system libraries that are
required for the X Test Suite that are not searched by default. This will
probably include Xlib.

Eg: SYSLIBS=-lX11

If you wish to build the X Test Suite to make use of the XTEST
extension, you will need to include the XTEST library and the
X extension library (in that order).

Eg: SYSLIBS=-lXtst -lXext -lX11

Imake variables: ExtraLibraries

XP_SYSLIBS Any system libraries that are needed, to link the X Protocol tests. This
will include Xlib, since libXst.a (which is part of the test suite) will
include at least one call to XOpenDisplay.

Eg: XP_SYSLIBS=-lX11

Imake variables: ExtraLibraries

SYSINC Any commands that should be given to the C compiler to cause all
relevant system include files to be included. This will probably
include /usr/include/X11.

Eg: SYSINC=-I/usr/include/X11

3.3.6 C Compiler Directives

Directives to the C compiler. Usually only the first four parameters will need changing.
The remainder are internally used parameters, which are an amalgam of previously set
parameters.

COPTS Options to the C compiler.

Eg: COPTS=-O

Imake variables: DefaultCDebugFlags and DefaultCCOptions

DEFINES Options required by the C compiler to set up any required defines. For
example in strict ANSI Standard-C systems you will need to define
_POSIX_SOURCE. Additionally on an X/Open conformant system it
may be necessary to define _XOPEN_SOURCE.

Eg: DEFINES=-D_POSIX_SOURCE

If there is no symbol NSIG defined in the system header file
signal.h, then this has to be supplied for use by the TET API. It
should be the number of signal types on the system.

Eg: DEFINES=-D_POSIX_SOURCE -DNSIG=32

If you wish to build the X Test Suite to make use of the XTEST
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extension, you will need to define XTESTEXTENSION.
XTESTEXTENSION is only used when building the X Test Suite
library.

Eg: DEFINES=-D_POSIX_SOURCE -DNSIG=32 -DXTESTEXTENSION

Imake variables: StandardDefines

XP_DEFINES C compiler defines specific to the X Protocol tests.
This can be set as DEFINES, but you can build support for additional
connection methods beyond TCP/IP, using the following defines, if
XP_OPEN_DIS is XlibNoXtst.c (R4/R5 XOpenDisplay emulation):

-DDNETCONN - Connections can also use DECnet3.

-DUNIXCONN - Connections can also use UNIX4 domain sockets.

Refer to your documentation for building and installing Xlib on your
platform.
If XP_OPEN_DIS is one of XlibXtst.c or XlibOpaque.c then none of
the defines listed above will be required.

Eg: XP_DEFINES=-D_POSIX_SOURCE -DUNIXCONN

Imake variables: StandardDefines

LINKOBJOPTS Options to give to the LD program to link object files together into one
object file that can be further linked.

Eg: LINKOBJOPTS=-r

INCLUDES Options to cause C compiler to search the correct directories for
headers. This should not need changing as it is just an amalgam of
other parameters.

INCLUDES=-I. ${PORTINC} -I${TETINCDIR} -I${XTESTINCDIR} ${SYSINC}

CFLAGS Flags for the C compiler. This should not need changing as it is just an
amalgam of other parameters. Note that CFLOCAL is not defined in the
configuration file; it is available for use in makefiles, to define
parameters that only apply to a particular case. (It intentionally uses
parentheses rather than braces)

CFLAGS=$(CFLOCAL) $(COPTS) $(INCLUDES) $(DEFINES)

XP_CFLAGS Flags for the C compiler. This parameter is used by the X Protocol
tests in the X Test Suite. This should not need changing as it is just an
amalgam of other parameters.

XP_CFLAGS=$(CFLOCAL) $(COPTS) $(INCLUDES) $(XP_DEFINES)

4. DEC and DECnet are registered trademarks of Digital Equipment Corporation.

4. UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.
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LDFLAGS Flags used by the loader. This is needed on some systems to specify
options used when object files are linked to produce an executable.

Eg. LDFLAGS=-ZP

LIBS List of libraries. This should not need changing as it is just an
amalgam of other parameters.

LIBS=${XTESTLIB} ${XTESTFONTLIB} ${APILIB} ${PORTLIB}

XP_LIBS List of libraries. This parameter is used by the X Protocol tests in the
X Test Suite. This should not need changing as it is just an amalgam
of other parameters.

XP_LIBS=${XSTLIB} ${XTESTLIB} ${XTESTFONTLIB} ${APILIB} ${PORTLIB}

XP_OPEN_DIS A choice of which code to build in the X Protocol library to make an X
server connection. This must be set to one of three possible values:

XlibXtst.c
Use this option only if your Xlib includes post R5 enhancements
to _XConnectDisplay ensuring maximum portable protocol test
coverage. These enhancements include arguments to
_XConnectDisplay to return authorisation details on connection.
If you use this option when your Xlib does not have these
enhancements to _XConnectDisplay, the results of running the
X Protocol tests will be undefined.

XlibOpaque.c
You hav e a normal R4 Xlib or early R5 Xlib which you cannot
patch to include the enhancements to _XConnectDisplay, and you
cannot emulate these by building XlibNoXtst.c, so only client-
native testing can be done portably, and no failure testing of
XOpenDisplay can be done. This option uses XOpenDisplay to
make the connection, from which the file descriptor is recovered
for our own use. XCloseDisplay shuts down the connection.

XlibNoXtst.c
As for XlibOpaque.c but you can use the R4/R5 connection
emulation supplied. (Note: R4/R5 independent) This will ensure
maximum protocol test coverage but may not be portable to all
platforms.

Reasons for not being able to build XlibNoXtst.c might include:
i) different interfaces to connection setup and connection read/write;
ii) different access control mechanisms.
Refer to your Xlib documentation for further details.

Eg. XP_OPEN_DIS=XlibOpaque.c

3.3.7 Pixel validation section

This section defines a number of parameters that are used only when generating known
good image files. These are not intended to be modified and need not be used when
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running the test suite. They are only used in the development environment at UniSoft
when generating known good image files.

3.4 Clean configuration parameters

The TET provides a scheme to execute a clean tool, which removes previously built tests
and object files.

All clean configuration parameters are contained in a configuration file that forms part of
the TET. The file

$TET_ROOT/xtest/tetclean.cfg

contains all the parameters that are needed to clean the X Test Suite.

To sav e configuration effort, we have arranged that the build and clean configuration files
may contain identical parameter settings. Both files are needed, since the TET requires
both a default build and clean configuration file.

Copy the build configuration file into the clean configuration file:

cd $TET_ROOT/xtest

cp tetbuild.cfg tetclean.cfg

3.5 System dependent source files

This section describes source files and include files provided in the X Test Suite which
contain data, which you may need to edit to reflect the system under test.

3.5.1 Host address structures

The file xthost.c in the directory $TET_ROOT/xtest/src/lib contains three
items, which you may need to edit to reflect the system under test. These are all related to
the mechanisms provided by the X server under test to add, get or remove hosts from the
access control list. These are only used in the tests for those Xlib functions which use or
modify the access control list.

The host access control functions use the XHostAddress structure. You should refer to
the Xlib documentation for your system, to determine the allowed formats for host
addresses in an XHostAddress structure. You may also find it helpful to refer to the X
Window System Protocol documentation supplied with the X server under test. The
section describing the ChangeHosts protocol request gives examples of host address
formats supported by many X servers. The symbols FamilyInternet, FamilyDECnet,
FamilyChaos and FamilyUname are defined on many systems in the include files X.h and
Xstreams.h. The X server under test is not guaranteed to support these families, and may
support families not listed here. You should find out which families are supported for the
X server under test, by examining the header files supplied with your system, and
consulting the documentation supplied with the X server.

Some default declarations are contained in the file, but there is no guarantee that they will
work correctly on your system.

The three items are as follows:

1. You should ensure that there is a declaration for an array xthosts[] of at least 5
XHostAddress structures containing valid family,length,address triples.
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2. You should ensure that there is a declaration for an array xtbadhosts[] of at least 5
XHostAddress structures containing invalid family,length,address triples. You
should ensure that there is a declaration for an array xtbadhosts[] of at least 5
XHostAddress structures containing invalid family,length,address triples. If you
cannot use the supplied examples, the simplest way to do this is to use an invalid
family, which is not supported by the X server under test, in each structure of the
array.

3. You should ensure that there is a declaration for a function samehost() that
compares two XHostAddress structures and returns True if they are equivalent. (It
is unlikely that the sample function will need modification - no systems requiring
modification have yet been identified).
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4. Building the TET

The X Test Suite runs under the Test Environment Toolkit (TET).

This section of the User Guide tells you how to build and install the supplied version of
the TET.

The following instructions assume the use of a Bourne shell.

The PATH variable should have the directory $TET_ROOT/xtest/bin prepended to it.

PATH=$TET_ROOT/xtest/bin:$PATH

export PATH

4.1 The portability library

The current version of the TET used by the X Test Suite is designed to run on a POSIX.1
system.

Since many systems running the X Window System currently run on BSD based systems
a portability library that emulates the required routines using BSD facilities has been
provided.

This library is not part of the TET itself.

The portability library source is kept in $TET_ROOT/port.

The portability library may be useful in porting the X Test Suite to other environments as
described below. Please refer to the "Release Notes for the X Test Suite" for details of
the target execution environments, and a list of systems to which it has already been
ported.

4.1.1 Porting to a POSIX.1 system

If your system conforms to POSIX.1 and has an ANSI Standard-C compiler then this
library should not be built and so this section can be skipped. The exception is that
putenv() may not exist on a POSIX.15 system, however it is in the SVID6 and the
XPG7, so in practice most non-BSD machines will have this function.

4.1.2 Porting to a BSD system

If the system is a standard BSD one, then the portability library can be used as it is; build
it as follows.

cd $TET_ROOT/port

pmake

4.1.3 Porting to other systems

The portability library may be useful as a base for porting the TET to other non-POSIX
systems, however the portability library is designed to run on a BSD system, and will not
necessarily build without change on other systems.

5. IEEE Std 1003.1-1990, Portable Operating System Interface for Computer Environments

6. System V Interface Definition, Issue 1, AT&T, Spring 1985.

7. X/Open Portability Guide Issue 3, Volume 2: XSI System Interface and Headers
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The following routines are emulated for use under a BSD system, and these may be
needed on other systems:

getcwd() getopt() putenv() sigaction()

sigaddset() sigdelset() sigemptyset() sigfillset()

sigismember() sigpending() sigprocmask() sigsuspend()

strchr() strcspn() strftime() strpbrk() strrchr()

strspn() strtok() toupper() upcase()

vsprintf() waitpid()

Only the features that are used by the X Test Suite are emulated. They are not meant to
mimic completely the standard behaviour.

There is also an include directory $TET_ROOT/port/INC that contains header files
that are required that are not found on a BSD system. These files contain only items that
are needed for the X Test Suite, they are not designed to replace completely the standard
ones.

To adapt the portability library to other systems, the following hints may be found useful:

• Examine the directory $TET_ROOT/port/INC. If the system already provides a
standard conforming header file of the same name as one in the INC directory, then
remove the version from the INC directory.

• The header files contain the bare minimum required to compile the X Test Suite,
and use BSD features. It may be necessary to alter them to suit the local system.
This applies particularly to signal.h.

• It may be necessary to add other header files.

• In the library Makefile remove any function that is already provided by the
system in a standard conforming form.

• Examine the code of the remaining functions to make sure that they will work on
the target system.

4.2 Building libraries and utilities

There is a top level Makefile which can be used to automatically perform a number of the
following steps. You should still check through the User Guide and perform the steps
which need to be done manually. In particular you need to build and install the test fonts
as described in the section entitled "Compiling and installing the test fonts".

The top level Makefile enables the following steps to be performed:

Building the TET:

1. The Test Case Controller (TCC)

2. The API library

Building the X test suite libraries and utilities:

1. Building the X test suite library

2. Building the X Protocol library
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3. Building the X test fonts library

4. Building the mc utility

5. Building the blowup utility

To use the top level Makefile, move to the top level directory:

cd $TET_ROOT

Make the utilities and libraries with the command:

make

4.3 The Test Case Controller (TCC)

Move to the directory containing the TCC source.

cd $TET_ROOT/tet/src/posix_c/tools

Make the TCC with the command:

pmake install

Note: the supplied version of the TCC assumes that the cp utility on your system supports
recursive copy using the option -r. There are two occurrences of cp in the file exec.c
which use this option.

In the X Test Suite, recursive copying is not required.

If your system does not support this option, you can remove the use of this option in the
source code before building the TCC. If you do this you may not be able to use the
supplied TCC with other test suites.

Alternatively, you can provide a shell script in the directory $TET_ROOT/xtest/bin
which copies files using cp but ignores any option -r.

4.4 The API library

Move to the API library source directory.

cd $TET_ROOT/tet/src/posix_c/api

Run the command

pmake install

which should produce the files libapi.a and the Test Case Manager files tcm.o and
tcmchild.o.

5. Building the X test suite libraries and utilities

5.1 The X test suite library

A library of common subroutines for the X Test Suite has source in
$TET_ROOT/xtest/src/lib. This is built automatically when building tests in the
X Test Suite. Should it be required to build it separately for any reason run the command.
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cd $TET_ROOT/xtest/src/lib

pmake install

The list of source files in this library is described in the "Programmers Guide".

5.2 The X Protocol library

A library of common subroutines for the X Protocol tests in the X Test Suite has source
in $TET_ROOT/xtest/src/libproto. This is built automatically when building
tests in the X Test Suite. Should it be required to build it separately for any reason run
the command.

cd $TET_ROOT/xtest/src/libproto

pmake install

The list of source files in this library is described in the "Programmers Guide".

5.3 The X test fonts library

A library of common subroutines defining the characteristics of the test fonts for the
X Test Suite has source in $TET_ROOT/xtest/fonts. This is built automatically
when building tests in the X Test Suite. Should it be required to build it separately for
any reason run the command.

cd $TET_ROOT/xtest/fonts

pmake install

The list of source files in this library is described in the "Programmers Guide".

Note that the directory $TET_ROOT/xtest/fonts also contains the test fonts
themselves in bdf format, which must be compiled and installed. Instructions for
performing these steps are included in the next section entitled "Compiling and installing
the test fonts".

5.4 Compiling and installing the test fonts

The X Test Suite contains a series of test fonts which are used to test the correctness of
the information returned by the graphics functions in the X Window System. This is done
by comparing the information returned by those functions with the expected font
characteristics which are compiled into the tests via the X test fonts library. The X test
fonts library is described in an earlier section of this document.

There are seven test fonts whose descriptions are contained in the files

xtfont0.bdf xtfont1.bdf xtfont2.bdf

xtfont3.bdf xtfont4.bdf xtfont5.bdf

xtfont6.bdf

These files are located in the directory $TET_ROOT/xtest/fonts.

The manner in which fonts should be compiled and installed for any particular X server is
system dependent, and you should refer to the instructions supplied with your release of
the X Window System for details of how to do this.

Some sample instructions are given here which may be useful on many systems. These
may not be appropriate for your system, or they may need adaptation to work properly on
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your system and so are provided only as a guide.

1. Move to the directory $TET_ROOT/xtest/fonts.

cd $TET_ROOT/xtest/fonts

2. Compile the seven bdf files into snf, pcf, or fb format, as appropriate for your
system.

pmake comp_snf

or

pmake comp_pcf

or

pmake comp_dxpcf

or

pmake comp_fb

3. Copy the compiled fonts into the server font directory (the XTESTFONTDIR
configuration parameter).

pmake install_snf

or

pmake install_pcf

or

pmake install_dxpcf

or

pmake install_fb

5.5 Building the mc utility

The mc utility is used to generate test set source files and Makefiles from a template file,
known as a dot-m file. The file naming scheme is described further in appendix B. The
file formats are described further in the "Programmers Guide".

The Makefiles and test set source files will be created using mc whenever test sets are
built, if the dot-m file is found to be newer than the source file or Makefile, or if these
files do not exist.

Build mc and install in the xtest bin directory as follows.

cd $TET_ROOT/xtest/src/bin/mc

pmake install

cd $TET_ROOT/xtest/src/bin/mc/tmpl

pmake install

5.6 Building the blowup utility

The blowup utility is required for examining any incorrect image files generated by the X
server during a test run. Instructions for running the blowup program are given in the
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section entitled "Examining image files".

Build blowup and install in the xtest bin directory as follows.

cd $TET_ROOT/xtest/src/pixval/blowup

pmake install

- 19 -



User Guide for the X Test Suite

6. Building the tests

6.1 Building tests using the TET

The entire X Test Suite can be built by using the build mode of the TCC. In this mode, the
build configuration parameters in the file $TET_ROOT/xtest/tetbuild.cfg are
used to build each test set in the X Test Suite separately.

cd $TET_ROOT/xtest

tcc -b [ -s scenario_file ] [ -j journal_file ] [ -y string ] xtest all

-b
This invokes the TCC in build mode. (If you have just finished building the TCC
from the csh, you will probably have to rehash to get tcc in your path.)

-s scenario_file
This option builds the test sets in the named scenario file. The default is a file
named tet_scen in the directory $TET_ROOT/xtest. For more details refer
to the section entitled "Building modified scenarios using the TET".

-j journal_file
This option sends the output of the build to the named journal file. The default is a
file named journal in a newly created sub-directory of
$TET_ROOT/xtest/results. Sub-directories are created with sequential four
digit numbers, with the TCC flags (in this case "b") appended. The TCC will exit if
the specified journal file already exists, thus the journal file should be renamed or
removed before attempting to execute the TCC.

-y string
This option only builds tests which include the specified string in the scenario file
line. This may be used to build specific sections or individual test sets.

xtest
This is the name of the test suite. It determines the directory under $TET_ROOT
where the test suite is to be found.

all
This is the scenario name in the default scenario file
$TET_ROOT/xtest/tet_scen. For more details refer to the section entitled
"Building modified scenarios using the TET"

This will execute the TET build tool in the TET configuration variable TET_BUILD_TOOL
(which is normally pmake), in each test set directory of the X Test Suite.

The journal file should be examined to verify that the build process succeeded. The
report writer rpt cannot interpret the contents of a journal file produced during the build
process.

Note: If the TCC terminates due to receipt of a signal which cannot be caught, the TCC
may leave lock files in the test source directories. Subsequent attempts to restart the TCC
may give error messages saying that a lock file was encountered. At this point TCC may
suspend the build. It may be necessary to find and remove files or directories named
tet_lock before continuing.
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6.1.1 Signal handling in the TET

An interrupt signal (caused for example by typing the system interrupt character on the
controlling terminal) will cause the TCC to abort the currently executing test case. The
journal file output records the fact that the test case was interrupted.

Any other signal which can be caught by the TCC causes it to terminate. By default, the
system suspend character will also cause the TCC to terminate. If you wish to be able to
suspend the TCC, you can add the relevant signals to the parameter SIG_LEAVE in the
Makefile for the TCC. Signals in this list will not be caught, but will cause their default
action. This is explained further in the Test Environment Tookit Release Notes.

6.2 Building, executing and cleaning tests using the TET

Each test in the X Test Suite may be built, executed and cleaned before the next test set in
the scenario. This mode of use has the advantage that the entire X Test Suite may be
executed, without necessarily building all the test sets in advance. This mode of use has
the disadvantage that you will need to rebuild a test set before rerunning, which will take
considerably longer than when it is built in advance.

To do this, skip to the section entitled "Executing the X Test Suite", and refer to the
instructions in the sub-section entitled "Building, executing and cleaning tests using the
TET"

6.3 Building modified scenarios using the TET

6.3.1 Format of the scenario file

The TET uses a scenario file to determine which test sets to build. The file
$TET_ROOT/xtest/tet_scen is the default scenario file. The format is basically a
scenario name starting in column one, followed by list of test sets to be built (each
starting beyond column one). Only one scenario named "all" is provided in the default
scenario file.

The names of the test sets are given relative to the directory $TET_ROOT/xtest, and must
commence with a leading slash.

6.3.2 Modifying the scenario file

The file $TET_ROOT/xtest/tet_scen may be modified by removing lines
corresponding to test sets which are not wanted. These will then simply not be built by
the TCC. Alternatively, unwanted lines may be commented out by placing # in column
one of a line.

It is recommended that the supplied scenario file should be saved if it is modified.

6.3.3 Creating new scenario files

A new scenario file may be created in the directory $TET_ROOT/xtest. The TCC will
use this scenario file instead of the file $TET_ROOT/xtest/tet_scen if it is passed
via the -s option. For example

cd $TET_ROOT/xtest

tcc -b -s scenario_file [ -j journal_file ] [ -y string ] xtest all
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6.4 Building tests without using the TET

See section 11, entitled "Building, executing and reporting tests without using the TET".

6.5 Building tests in space-saving format

It is possible to build the tests in the X Test Suite such that all the executable files in one
section are links to a single executable file. This normally allows a considerable reduction
in the disc space requirements for the X Test Suite when fully built.

Note that the names of the files built in space-saving format are different to the names of
the separate executable files built using the instructions in previous sections. There is
nothing to prevent both sets of executables being built (although there is no value in this,
and unnecessary disc space will be consumed).

6.5.1 Building tests in space-saving format using the TET

Before reading this section, read the section entitled "Building the tests using the TET".
This gives an explanation of the build mode of the TET, and the structure of scenario files.

A scenario named linkbuild is provided in a scenario file named link_scen in the
directory $TET_ROOT/xtest. This enables the TCC to build the space-saving executable
files and create all the required links for each test set in each section of the X Test Suite.
The -y option allows a particular space-saving executable for a single section to be built.

Execute the command:

cd $TET_ROOT/xtest

tcc -b -s link_scen [ -j journal_file ] [ -y string ] xtest linkbuild

This command will execute the TET build tool in the TET configuration variable
TET_BUILD_TOOL (which is normally pmake), in the top level directory of each section
of the test suite.

6.5.2 Building tests in space-saving format without using the TET

This section describes how to build the space-saving executable files for a particular
section of the X Test Suite directly without using the TET.

This can be simply done by calling pmake in the required directory. For example, to
build all the space-saving executable files for section 5 of the X Test Suite, execute the
command:

cd $TET_ROOT/xtest/tset/CH05

pmake
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7. Executing the X Test Suite

Once you have built the X Test Suite as described in the previous sections, work through
the following sections to execute the tests.

7.1 Setting up your X server

The first step is to ensure that the X server to be tested is correctly set up.

7.1.1 Formal verification testing

A number of the tests within the X Test Suite can only give reliable results if there is no
window manager and no other clients making connections to the X server. Thus, when
conducting formal verification tests, there should be no window manager and no other
clients connected to the X server.

It is recommended that you close down and restart your X server before a formal
verification test run, in order to ensure that results produced are repeatable and are not
affected by earlier tests, although this is not strictly necessary.

You should switch off the screen saver if possible before starting formal verification tests.
This is because some X servers implement the screen saver in a way which interferes
with windows created by test suite clients, which may cause misleading results. If the
screen saver cannot be switched off, the time interval should be set so large as to prevent
interference with the tests.

You should also ensure that access control is disabled for the server under test, so that the
test suite can make connections to the server. Also (if the X server allows this) you
should ensure that clients on the host system (as specified in the build configuration
parameter XTESTHOST) can modify the access control list. Some X servers support the
-ac option which disables host-based access control mechanisms. If this option is
supported, you should use it.

7.1.2 Informal testing and debugging

Although no guarantee can be made that the tests within the X Test Suite will give correct
results if there are window managers and other clients connected to the X server, it is still
possible to run many tests satisfactorily.

This section gives some guidelines which may be helpful in running tests with a window
manager present, and still deriving correct results. The guidelines have been derived
from the experience gained during the development of the tests.

Using these guidelines in connection with the instructions in section 11, entitled
"Building, executing and reporting tests without using the TET", gives a rapid means to
investigate the results of particular tests in detail.

1. Set XT_DEBUG_OVERRIDE_REDIRECT=Yes in your execution configuration
file. This is described in more detail in the next section.

2. Do not raise any windows on top of those created by running tests.

3. Avoid having any windows at position (0,0). Note that some window managers
such as tvtwm create their own "root" window at position (0,0). This mainly
affects tests for section 8 of the X11R4 Xlib specifications.
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4. Be prepared to lose the input focus when tests are running and don’t forcibly
restore it. This mainly affects tests for section 8 of the X11R4 Xlib specifications.

7.2 Execute configuration parameters

The next step is to set up the execution configuration file.

All execution configuration parameters are contained in a configuration file that forms
part of the TET. This file should be edited to reflect the configuration of the X server to
be tested and the underlying operating system on which Xlib is implemented. The file

$TET_ROOT/xtest/tetexec.cfg

contains all the parameters that are needed to execute the X Test Suite. The parameters
are grouped in eight sections within the configuration file.

Numeric execution parameters may be specified in decimal, octal, or hexadecimal. Octal
values must be a sequence of octal digits preceded by 0. Hexadecimal values must be a
sequence of hexadecimal digits preceded by 0x or 0X.

7.2.1 Configuration parameters defined by the TET

TET_EXEC_IN_PLACE
Setting this variable to False indicates that files will be executed in a temporary
execution directory. Use of a temporary execution directory for each test enables
parallel execution of the test suite against multiple servers.

Setting this variable to True will give you improved performance if you are not
attempting parallel execution of the test suite against multiple servers.

Eg: TET_EXEC_IN_PLACE=False

TET_SAVE_FILES
This indicates which files generated during execution of tests are to be saved for
later examination. This line should not be altered.

Eg. TET_SAVE_FILES=Err*.err,*.sav

7.2.2 Configuration Parameters for the X Test Suite

The following parameters are used in many places in the X Test Suite. These should be
set to match the X server to be tested and the underlying operating system on which Xlib
is implemented.

XT_DISPLAY
This should be set to a display string that can be passed to XOpenDisplay, to access
the display under test. It must include a screen; all testing is done for a particular
screen.

Eg: XT_DISPLAY=:0.0

XT_ALT_SCREEN
If the display supports more than one screen, this parameter should be set to the
number of a screen that is different from that incorporated in the XT_DISPLAY
variable.
Set to the string UNSUPPORTED if only one screen is available.
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Note that this should be a screen number, not a display string that can be passed to
XOpenDisplay.

Eg: XT_ALT_SCREEN=1

XT_FONTPATH
This should be set to a comma separated list that is a valid font path for the X
server. It should include at least the components of the default font path for the X
server, enabling the cursor font to be accessed. One of the components must be the
directory in which the test fonts were installed (see the section entitled "Compiling
and installing the test fonts").

This parameter will be used to set the font path for specific test purposes which
access the test fonts. The font path is restored on completion of the specific test
purposes.

Eg: XT_FONTPATH=/usr/lib/X11/fonts/xtest/,/usr/lib/X11/fonts/misc/

XT_SPEEDFACTOR
This is a speedfactor which should be set to reflect the relative delay in response of
the underlying operating system and X server combined. Co-operating processes
which must synchronize allow a time delay in proportion to this speedfactor, to
account for scheduling delays in the underlying operating system and X server.
This should be set to a number greater than or equal to one. There should be no
need to change the default unless the round trip time to the X server can be very
long ( >15 seconds); in this case set this parameter to a value larger than the
maximum round trip time divided by 3.

Eg: XT_SPEEDFACTOR=5

XT_RESET_DELAY
Specifies a delay time in seconds. Set this to be a time which is greater than or
equal to the maximum time required by your server to reset when the last client is
closed. The test suite pauses for this time whenever a connection is about to be
opened and the server may be resetting. The server may be resetting when the test
case is entered (in startup()) as a result of closing the last connection in the
previous test case. The server also resets in a few places in the test for
XCloseDisplay().

Eg. XT_RESET_DELAY=1

XT_EXTENSIONS
Specifies whether you wish to test the extended assertions which require the
XTEST extension. Set this to Yes if the XTEST extension is available on your
system, and you have configured the test suite to use the XTEST extension, and
you want to execute these tests, otherwise set to No.

Eg. XT_EXTENSIONS=No

7.2.3 Configuration parameters for specific tests

The following parameters are used to control one or more specific test purposes in the
X Test Suite. These should be set to appropriate values for the X server to be tested.
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These parameters may cause temporary changes in the settings of the X server under test
(such as the font path). Settings are restored on completion of the specific test purposes.

XT_VISUAL_CLASSES
A space separated list of the visual classes that are supported for the screen given
by XT_DISPLAY. Each visual class is followed by a list of depths at which the
class is supported (enclosed by brackets and separated by commas with no spaces).
Visual classes and depths that are supported only by other screens should not be
included.
Note that this parameter is only used to check the correctness of the values returned
by XMatchVisualInfo and XGetVisualInfo. Other tests which loop over visuals
obtain the values by calling these functions.

Eg. XT_VISUAL_CLASSES=StaticGray(8) GrayScale(8) StaticColor(8)

PseudoColor(8) TrueColor(8) DirectColor(8)

(This must be typed as one line.)

XT_FONTCURSOR_GOOD
This specifies the number of a glyph in the default cursor font known to exist.
XT_FONTCURSOR_GOOD+2 should also be a glyph in the default cursor font.
Neither of these should be the same as the X server’s default cursor.

Eg: XT_FONTCURSOR_GOOD=2

XT_FONTCURSOR_BAD
This specifies the number of a glyph in the default cursor font known not to exist.
If no such value exists, set to UNSUPPORTED.

Eg: XT_FONTCURSOR_BAD=9999

XT_FONTPATH_GOOD
This should be set to a comma separated list that is a valid font path for the X
server. It should be different from XT_FONTPATH. It need not contain the test
fonts.

Eg: XT_FONTPATH_GOOD=/usr/lib/X11/fonts/100dpi/,/usr/lib/X11/fonts/75dpi/

XT_FONTPATH_BAD
This should be set to a comma separated list that is an invalid font path for the X
server. If you cannot determine a suitable value, set to UNSUPPORTED. There is
no default value - by default, tests which use this parameter will be reported as
UNSUPPORTED.

Eg: XT_FONTPATH_BAD=/jfkdsjfksl

XT_BAD_FONT_NAME
This should be set to a non-existent font name.

XT_BAD_FONT_NAME=non-existent-font-name

XT_GOOD_COLORNAME
This should be set to the name of a colour which exists in the colour database for
the X server.
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Eg: XT_GOOD_COLORNAME=red

XT_BAD_COLORNAME
This should be set to the name of a colour which does not exist in the colour
database for the X server.

Eg: XT_BAD_COLORNAME=nosuchcolour

XT_DISPLAYMOTIONBUFFERSIZE
This should be set to a non-zero value (the value returned by
XDisplayMotionBufferSize) if the X server supports a more complete history of
pointer motion than that provided by event notification, or zero otherwise. The
more complete history is made available via the Xlib functions
XDisplayMotionBufferSize and XGetMotionEvents.

Eg: XT_DISPLAYMOTIONBUFFERSIZE=256

7.2.4 Configuration parameters for Display functions

The following parameters are used to control one or more test purposes for Xlib Display
functions which are in section 2 of the X11R4 Xlib specifications. These should be set to
match the display specified in the XT_DISPLAY parameter.

Some of these parameters are specific to the particular screen of the display under test.
This is also specified in the XT_DISPLAY parameter.

Settings to these parameters will not cause any change in the settings of the X server
under test.

Suitable values for most of these parameters can be obtained from the output of the X11
utility xdpyinfo.

XT_SCREEN_COUNT
This parameter should be set to the number of screens available on the display as
returned by XScreenCount.

Eg: XT_SCREEN_COUNT=2

XT_PIXMAP_DEPTHS
A space separated list of depths supported by the specified screen of the display
that can be used for pixmaps.

Eg: XT_PIXMAP_DEPTHS=1 8

XT_BLACK_PIXEL
This parameter should be set to the black pixel value of the specified screen of the
display.

Eg: XT_BLACK_PIXEL=1

XT_WHITE_PIXEL
This parameter should be set to the white pixel value of the specified screen of the
display.

Eg: XT_WHITE_PIXEL=0
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XT_HEIGHT_MM
This parameter should be set to the height in millimeters of the specified screen of
the display.

Eg: XT_HEIGHT_MM=254

XT_WIDTH_MM
This parameter should be set to the width in millimeters of the specified screen of
the display.

Eg: XT_WIDTH_MM=325

XT_PROT OCOL_VERSION
This should be set to the major version number (11) of the X protocol as returned
by XProtocolVersion.

Eg. XT_PROTOCOL_VERSION=11

XT_PROT OCOL_REVISION
This should be set to the minor protocol revision number as returned by
XProtocolRevision.

Eg. XT_PROTOCOL_REVISION=0

XT_SERVER_VENDOR
This should be set to the X server vendor string as returned by XServerVendor.

Eg: XT_SERVER_VENDOR=MIT X Consortium

XT_VENDOR_RELEASE
This should be set to the X server vendor’s release number as returned by
XVendorRelease.

Eg. XT_VENDOR_RELEASE=5000

XT_DOES_SAVE_UNDERS
Set this to Yes if the specified screen of the display supports save unders (indicated
by XDoesSaveUnders returning True) otherwise set to No.

Eg. XT_DOES_SAVE_UNDERS=Yes

XT_DOES_BACKING_STORE
Set this to the following value:
0 - the specified screen supports backing store NotUseful
1 - the specified screen supports backing store WhenMapped
2 - the specified screen supports backing store Always
The way the specified screen supports backing store is indicated by the return value
of XDoesBackingStore.

Eg. XT_DOES_BACKING_STORE=2

7.2.5 Configuration parameters for connection tests

The following parameters are used to control one or more test purposes for
XOpenDisplay, XCloseDisplay and XConnectionNumber. These should be set to match
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the display specified in the XT_DISPLAY parameter and the characteristics of the
underlying operating system.

Settings to these parameters will not cause any change in the settings of the X server
under test.

These parameters are not used when making connections to the X server in other tests.

XT_POSIX_SYSTEM
This may be set to Yes to indicate that the underlying operating system is a POSIX
system. If this parameter is set to Yes, some extended assertions which describe
implementation dependent functionality will be tested assuming POSIX concepts.

Eg. XT_POSIX_SYSTEM=Yes

XT_DECNET
Set this to Yes if clients can connect to the X server under test using DECnet. This
will be used (on a POSIX system) in the tests for XOpenDisplay.

Eg. XT_DECNET=No

XT_TCP
Set this to Yes if clients can connect to the X server under test using TCP streams.
This will be used (on a POSIX system) in the tests for XOpenDisplay.

Eg. XT_TCP=Yes

XT_DISPLAYHOST
Set this to the hostname of the machine on which the display is physically attached.
This will be used instead of XT_DISPLAY (on a POSIX system) in the tests for
XOpenDisplay which specifically test the hostname component of the display
name.

Note that this may not be the same as the machine on which the test suite clients
execute (XTESTHOST).

Eg. XT_DISPLAYHOST=xdisplay.lcs.mit.edu

XT_LOCAL
Set this to Yes if clients can connect to a local X server without passing a hostname
to XOpenDisplay. This will be used (on a POSIX system) in the tests for
XOpenDisplay. This is usually the case when the X server under test is running on
the same platform as the X Test Suite. When a hostname is omitted, the Xlib
implementation of XOpenDisplay can use the fastest available transport
mechanism to make local connections.

Eg. XT_LOCAL=No

7.2.6 Configuration Parameters which do not affect test results

There are a number of execution configuration parameters which can be used to reduce
the size of the journal file, or dump out more information from the test suite. They will
not alter the behaviour of the tests or the test results.
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XT_SAVE_SERVER_IMAGE
When set to Yes, the image produced by the server that is compared with the
known good image is dumped to a file with suffix ".sav" .

Eg: XT_SAVE_SERVER_IMAGE=Yes

XT_OPTION_NO_CHECK
This may be set to Yes to suppress the journal file records containing CHECK
keywords. Refer to appendix D for information on the contents of these messages.

Eg: XT_OPTION_NO_CHECK=Yes

XT_OPTION_NO_TRACE
This may be set to Yes to suppress the journal file records containing TRACE
keywords. Refer to appendix D for information on the contents of these messages.

Eg: XT_OPTION_NO_TRACE=Yes

7.2.7 Configuration Parameters for debugging tests

There are a number of execution configuration parameters which should not be set when
performing verification test runs. These are intended for debugging purposes. These
parameters may affect the behaviour of some test purposes if they are set to assist
debugging.

XT_DEBUG
This may be set to a debugging level. A higher level produces more debugging
output. Output is only produced by the test suite at levels 1, 2 and 3. Setting this
variable to 0 produces no debug output, and 3 gives everything possible (setting
this variable to 3 can give an enormous volume of output so you should not do this
when running large numbers of test sets).

Eg: XT_DEBUG=0

XT_DEBUG_OVERRIDE_REDIRECT
When set to Yes, windows are created with override_redirect set. This enables
tests to be run more easily with a window manager running on the same screen.
This should not be set to Yes for verification tests.

Eg: XT_DEBUG_OVERRIDE_REDIRECT=No

XT_DEBUG_PAUSE_AFTER
When set to Yes, the test pauses after each call to the Xlib function being tested,
until Carriage Return is entered. This is useful to enable the results of graphics
operations to be observed. This should not be set to Yes for verification tests.

Eg: XT_DEBUG_PAUSE_AFTER=No

XT_DEBUG_PIXMAP_ONLY
When set to Yes, tests which would normally loop over both windows and
pixmaps are restricted to loop over just pixmaps. This is useful for speeding up the
execution of the test set. This should not be set to Yes for verification tests.

If XT_DEBUG_WINDOW_ONLY is also set to Yes, some tests will report
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UNRESOLVED due to the fact that nothing has been tested.

Eg: XT_DEBUG_PIXMAP_ONLY=No

XT_DEBUG_WINDOW_ONLY
When set to Yes, tests which would normally loop over both windows and
pixmaps are restricted to loop over just windows. This is useful for speeding up the
execution of the test set. This should not be set to Yes for verification tests.

If XT_DEBUG_PIXMAP_ONLY is also set to Yes, some tests will report
UNRESOLVED due to the fact that nothing has been tested.

Eg: XT_DEBUG_WINDOW_ONLY=No

XT_DEBUG_DEFAULT_DEPTHS
When set to Yes, tests which would normally loop over multiple depths are
restricted to test just the first visual returned by XGetVisualInfo and/or the first
pixmap depth returned by XListDepths (depending on whether
XT_DEBUG_PIXMAP_ONLY or XT_DEBUG_WINDOW_ONLY is also set). This is
useful for speeding up the execution of the test set. This should not be set to Yes
for verification tests.

Note that the first visual returned by XGetVisualInfo may not be the default visual
for the screen.

Eg: XT_DEBUG_DEFAULT_DEPTHS=No

XT_DEBUG_VISUAL_IDS
When set to a non-empty string, tests which would normally loop over multiple
depths are restricted to test just the visuals ID’s listed. Note that visual ID’s for
visuals on more than one screen may be entered, but those used will depend on
whether the test being executed uses visuals on the default screen or alternate
screen. The visuals ID’s should be entered in decimal, octal or hexadecimal and
separated with commas and with no intervening spaces. This should not be set to a
non-empty string for verification tests.

Eg. XT_DEBUG_VISUAL_IDS=0x22,0x24,0x27

XT_DEBUG_NO_PIXCHECK
When set to Yes, tests which would normally perform pixmap verification omit
this (all other processing is performed in those tests as normal). Pixmap
verification is a scheme which compares the image produced by the X server with a
known good image file which is part of the X Test Suite (this is described further in
the section entitled "Examining Image Files"). This should not be set to Yes for
verification tests.

Eg: XT_DEBUG_NO_PIXCHECK=No

XT_DEBUG_BYTE_SEX
When set to NATIVE, REVERSE, MSB or LSB, the X Protocol tests will only be
executed with the specified byte sex. When set to BOTH, the X Protocol tests make
connections to the X server using both the native and reversed byte sex.

Note: The parameter should always be set to NATIVE when the build configuration
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parameter XP_OPEN_DIS was set to XlibOpaque.c

Eg: XT_DEBUG_BYTE_SEX=NATIVE

XT_DEBUG_VISUAL_CHECK
When set to a non-zero value, the X Protocol tests will pause for the specified time
interval (in seconds), to enable a visual check to be performed on the displayed
screen contents.

Eg: XT_DEBUG_VISUAL_CHECK=5

7.2.8 Configuration Parameters used only during test development

This section defines a number of parameters that are used only when generating known
good image files. These are not intended to be modified and need not be used when
running the test suite. They are only used in the development environment at UniSoft
when generating known good image files.

XT_FONTDIR
The directory in which the xtest fonts are located (before being installed). This
must be set such that appending a string gives a valid file name. This is normally
set to $TET_ROOT/xtest/fonts/.

Eg: XT_FONTDIR=/usr/mit/testsuite/xtest/fonts/

7.3 Executing tests using the TET

The X Test Suite is executed by invoking the execute mode of the Test Case Controller.

cd $TET_ROOT/xtest

tcc -e [ -s scenario_file ] [ -j journal_file ] [ -x config_file ]

[ -y string ] xtest all

-e
This invokes the TCC in execute mode.

-s scenario_file
This option executes the test sets in the named scenario file. The default is a file
named tet_scen in the directory $TET_ROOT/xtest. For more details refer
to the section entitled "Executing modified scenarios using the TET".

-j journal_file
This option sends the test results to the named journal file. The default is a file
named journal in a newly created sub-directory of
$TET_ROOT/xtest/results. Sub-directories are created with sequential four
digit numbers, with the TCC flags (in this case "e") appended. The TCC will exit if
the specified journal file already exists, thus the journal file should be renamed or
removed before attempting to execute the TCC.

-x config_file
This is an option to run the test suite using the information in a modified execution
configuration file named config_file. The default is tetexec.cfg.
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-y string
This option only executes tests which include the specified string in the scenario
file line. This may be used to execute specific sections or individual test sets.

xtest
This is the name of the test suite. It determines the directory under $TET_ROOT
where the test suite is to be found.

all
This is the scenario name in the default scenario file
$TET_ROOT/xtest/tet_scen. For more details refer to the section entitled
"Executing modified scenarios using the TET".

A journal file will be produced. More information on the contents of the journal file is
given in appendix C.

Note: If the TCC terminates due to receipt of a signal which cannot be caught, the TCC
may leave lock files in the test source directories. Subsequent attempts to restart the TCC
may give error messages saying that a lock file was encountered. At this point TCC may
suspend the build. It may be necessary to find and remove files or directories named
tet_lock before continuing.

7.4 Building, executing and cleaning tests using the TET

Each test in the X Test Suite may be built, executed and cleaned before the next test set in
the scenario. This mode of use has the advantage that the entire X Test Suite may be
executed without necessarily building all the test sets in advance, thus ensuring disc space
is conserved throughout. This mode of use has the disadvantage that you will need to
rebuild a test set before rerunning, which will take considerably longer than if it is built in
advance.

The X Test Suite is built, executed and cleaned by simultaneously invoking the build,
execute and clean modes of the Test Case Controller.

cd $TET_ROOT/xtest

tcc -bec [ -s scenario_file ] [ -j journal_file ] [ -x config_file ]

[ -y string ] xtest all

-b This invokes the TCC in build mode.

-e This invokes the TCC in execute mode.

-c This invokes the TCC in clean mode.

The other options are as described in the earlier section entitled "Executing tests using the
TET".

A journal file will be produced. This contains for each test set in order the results of the
build, followed by the test results, followed by the results of the clean. More information
on the contents of the journal file is given in appendix C.

The default journal file is named journal in a newly created sub-directory of
$TET_ROOT/xtest/results. Sub-directories are created with sequential four digit
numbers, with the TCC flags (in this case "bec") appended.
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7.5 Executing modified scenarios using the TET

7.5.1 Format of the scenario file

The TET uses a scenario file to determine which test sets to execute. The file
$TET_ROOT/xtest/tet_scen is the default scenario file. The format is basically a
scenario name starting in column one, followed by list of test sets to be executed (each
starting beyond column one). Only one scenario named "all" is provided in the default
scenario file.

The names of the test sets are given relative to the directory $TET_ROOT/xtest, and must
commence with a leading slash.

7.5.2 Modifying the scenario file

The file $TET_ROOT/xtest/tet_scen may be modified by removing lines
corresponding to test sets which are not wanted. These will then simply not be executed
by the TCC. Alternatively, unwanted lines may be commented out by placing # at the
start of the line.

If you wish to execute just a subset of the test purposes in a test set, refer to the section
below entitled "Executing individual test purposes using the TET".

It is recommended that the supplied scenario file should be saved if it is modified.

7.5.3 Creating new scenario files

A new scenario file may be created in the directory $TET_ROOT/xtest. The TCC will
use this scenario file instead of the file $TET_ROOT/xtest/tet_scen if it is passed
via the -s option. For example

cd $TET_ROOT/xtest

tcc -e -s scenario_file [ -j journal_file ] [ -x config_file ]

[ -y string ] xtest all

7.6 Executing individual test purposes using the TET

Each assertion in the X Test Suite has separate test code which is known as a test
purpose. We hav e arranged that each test purpose is also a separately invocable
component, and that the invocable component number is identical to the test purpose
number.

The expression within the braces at the end of a line within a scenario file is an invocable
component list (or IC_list). The default invocable component list all causes the TCC to
execute all invocable components in a test set.

By altering the invocable component list for a test set, particular invocable components of
interest can be executed.

The invocable component list consists of one or more elements separated by commas.
Each element is either an invocable component number, or a range of invocable
component numbers separated by a dash.

This is useful for quickly executing a particular test purpose of interest for example:

/tset/CH05/stclpmsk/Test{3}
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This is also useful for executing all test purposes except one known to cause a system
error. This may be useful if a particular test purpose causes your X server to exit (at
present the TET provides no high level control facilities to conditionally cancel later test
sets). For example:

/tset/CH05/stclpmsk/Test{1-2,4-6}

Note that the placement of windows used by the test suite may differ when an earlier test
purpose is not executed. It is intended that test purposes produce the same results
regardless of window placement.

7.7 Executing tests without using the TET

See section 11, entitled "Building, executing and reporting tests without using the TET".

7.8 Executing tests in space-saving format using the TET

Before reading this section, read the section entitled "Building tests in space-saving
format". When you have built all the sections of the test suite in space-saving format, you
can execute all the tests in the test suite using the instructions in this section.

A scenario named linkexec is provided in a scenario file named link_scen in the
directory $TET_ROOT/xtest. This enables the TCC to execute the space-saving
executable files which have been built.

Execute the command:

cd $TET_ROOT/xtest

tcc -e -s link_scen [ -j journal_file ] [ -x config_file ]

[ -y string ] xtest linkexec
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8. Report writer

A basic report writer rpt is included with the X Test Suite. It extracts and formats the
main information from a TET journal file produced by executing the TCC in execute
mode, or build-execute-clean mode. It does not format the TET journal file produced by
the TCC in build only or clean only mode. The main features of the TET journal file
produced by the TCC in execute or build-execute-clean mode are described in
appendix C.

Execute the report writer as follows:

rpt [ -t ] [ -d ] [ -p ] [ -s ] [ -f file ]

With only the -f argument, rpt lists the results of each test purpose for all test sets that
appear in the journal file file. The default is the file named journal in the highest
numbered subdirectory of the $TET_ROOT/xtest/results directory that has an ’e’
suffix.

The reason for any test result code which is other than PASS is printed out. This is done
by copying the test information messages of type REPORT. For further details, see
appendix D.

A warning message is printed if a test information message of type REPORT is giv en in a
test purpose which produced a test result code PASS.

The results for each test set are followed by a summary of the number of test purposes in
the test set which produced each result code type.

There is no overall summary list of results for all test sets in the journal file.

-t
Test information messages of type TRACE in the test purposes specified are
printed. For further details, see appendix D.

-d
Test information messages of type TRACE or DEBUG in the test purposes
specified are printed. For further details, see appendix D.

-p
Output is restricted to omit reporting on test purposes that resolve to PASS,
UNSUPPORTED, UNTESTED or NOTINUSE — thereby reporting only tests
showing possible errors.

-s
The result summaries after the end of each test set are omitted.
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9. Examining image files

9.1 Generating pixmap error files

During the test run, discrepancies may be encountered between the image displayed by
the server and the known good image. The known good image may have been obtained
from a known good image file supplied with the release, or it may have been determined
analytically.

Should a discrepancy be encountered, the test purpose will give a result code of FAIL.
The failure reason message will name a pixmap error file in which is contained both the
known good image and the server image.

A debug option has been provided, which skips any verification of the image produced by
the server with known good image files. This is done by setting the execution
configuration parameter XT_DEBUG_NO_PIXCHECK to Yes.

9.2 Pixmap error file naming scheme

Each invocation of the TCC creates a sub-directory in $TET_ROOT/xtest/results.
Sub-directories are created with sequential four digit numbers, with the TCC flags ("e" or
"bec") appended. The default TET journal is a file named journal created in this
directory.

Pixmap error files are stored in a directory tree created within the newly created results
sub-directory. So, for example, when the line

/tset/CH06/drwln

is executed in a scenario file, pixmap error files might be produced in a directory named
$TET_ROOT/xtest/results/0001bec/tset/CH06/drwln.

The creation of a new results directory tree for each execution of the TCC enables results
to be obtained in parallel against multiple X servers.

Pixmap error files are named Errnnnn.err, where nnnn is a four digit number. This
number does not correspond to the number of the test purpose which caused the error.

Note - when tests are executed without using the TCC the error files are produced in the
current directory.

9.3 Known good image file naming scheme

All the required known good image files for the test programs in the X Test Suite (as
supplied) have been created in advance. The known good image files for each test
program are supplied in the X Test Suite in the test set directory in which the dot-m file is
supplied. They are named annn.dat, where nnn is the number of the test purpose for
which the known good image file was generated.

More details of the contents of this release are in appendix A.

9.4 Using blowup to view image files

The contents of the two images in a pixmap error file may be compared by using the
blowup utility.

Also, a known good image file may be viewed directly.
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The file formats of the error file and the known good image file are the same. The blowup
utility detects which file type is being viewed by means of file name. For this reason, do
not rename the pixmap error or known good image files.

9.4.1 Blowup command

The blowup utility may be used to view one or more pixmap error files or known good
image files as follows:

blowup [-z zoom_factor] [-f font] [-d display] [-colour] file(s)

-z zoom_factor
This option sets the magnification factor in all the blowup windows.

-f font
This option ensures that font is used rather than the default font. The default font
is 6x10.

-d display
This option uses the display named display for the display windows.

-colour
On a colour display, this option will display different pixel values in different
colours corresponding to that server’s colour table. No attempt is made to preserve
colours between different servers.

9.4.2 Blowup windows

Tw o windows are created. The first is called Comparison, and the second is called
Blowup. The Blowup window shows a magnified version of a portion of the Comparison
window, which is indicated in the Comparison window by a  rectangle. A user interface
menu is shown in the Blowup window.

The title of the Comparison window will change to "Server Data", then to "Pixval Data"
and then back to "Comparison" when the "B/G/Both" option on the menu is used.

9.4.3 Selection of a viewing region

This may be done in one of three ways:

1. Click in the Comparison window.

2. Click in a square in the Blowup window. This becomes the new centre square in
that window.

3. Choose the "next error" option on the menu. The next pixel at which there is a
discrepancy will become the new centre square in the Blowup window.

9.4.4 Information displayed

The value stored in the centre pixel and its coordinates are shown as the top items in the
menu. Under some circumstances, the expected pixel value will be shown to the right of
the actual value.

9.4.5 Display of errors

When the "B/G/Both" option is set to Both, and the title of the Comparison window is
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Comparison, errors are displayed in two ways: one for each window.

In the Comparison window pixels set to non-zero in the "good image" but set incorrectly
in the "server data" are shown as a cross (X).

In the blowup window these are shown as a white square with a cross (X) through it.

In the Comparison window pixels set to zero in the "good image" but set incorrectly in
the "server data" are shown as shaded squares.

In the blowup window these are shown as a black square with a white cross through it.

The reason that we have proposed the two different methods of displaying errors is as
follows. One normally has a higher magnification in the Blowup window and the use of a
cross (X) through incorrect pixels is good, and simple to remember at this level of zoom.
In the Comparison window this style of display does not work well at the lower
magnification levels; all the crosses merge to a blur so it is hard to see what type of error
is being displayed.

9.4.6 Commands (via menu in the Blowup window)

All of the commands are invoked by clicking the left mouse button when the
corresponding menu item is highlighted (inverted). The available commands are, from top
to bottom:

B/G/Both
Show Bad (Server Data), Good (Pixval Data) or Both (Comparison). Clicking in
this advances around the cycle

Bad ----> Good -> Both
−-----<------<----/

The Comparison window’s name changes to reflect the current state.

If a known good image file is being displayed then only the Good option is
available. A pixmap error file is required for this command to be useful.

color/mono
Use colour/monochrome in the Blowup window.

next error
Advance centre pixel point to be next pixel at which there is a discrepancy.

sub-zoom +
Zoom in (make bigger by zoomfactor) on the Blowup window

sub-zoom -
Zoom out (make smaller by zoomfactor) on the Blowup window

quit
Quit from the blowup utility.

big-zoom +
Zoom in (make bigger by zoomfactor) on the Comparison window

big-zoom -
Zoom out (make smaller by zoomfactor) on the Comparison window
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next
View next file in the list. The Blowup window will be removed and a new one
created for each file. The size, and zoom factor, of the Comparison window will be
preserved across files.
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10. Cleaning the tests

10.1 Cleaning tests using the TET

The entire X Test Suite can be cleaned by using the clean mode of the TCC. In this mode,
the clean configuration parameters in the file $TET_ROOT/xtest/tetclean.cfg
are used to clean each test set in the X Test Suite separately. Previously built test set
executables and object files are removed.

cd $TET_ROOT/xtest

tcc -c [ -s scenario_file ] [ -j journal_file ] [ -y string ] xtest all

-c
This invokes the TCC in clean mode.

-s scenario_file
This option cleans the test sets in the named scenario file. The default is a file
named tet_scen in the directory $TET_ROOT/xtest. For more details refer
to the section entitled "Cleaning modified scenarios using the TET".

-j journal_file
This option sends the output of the clean to the named journal file. The default is a
file named journal in a newly created sub-directory of
$TET_ROOT/xtest/results. Sub-directories are created with sequential four
digit numbers, with the TCC flags (in this case "c") appended. The TCC will exit if
the specified journal file already exists, thus the journal file should be renamed or
removed before attempting to execute the TCC.

-y string
This option only cleans tests which include the specified string in the scenario file
line. This may be used to clean specific sections or individual test sets.

xtest
This is the name of the test suite. It determines the directory under $TET_ROOT
where the test suite is to be found.

all
This is the scenario name in the default scenario file
$TET_ROOT/xtest/tet_scen. For more details refer to the section entitled
"Cleaning modified scenarios using the TET".

This will execute the TET clean tool in the TET configuration variable
TET_CLEAN_TOOL (which is normally pclean), in each test set directory of the X Test
Suite.

The journal file should be examined to verify that the clean process succeeded. The
report writer rpt cannot interpret the contents of a journal file produced during the clean
process.

Note: If the TCC terminates due to receipt of a signal which cannot be caught, the TCC
may leave lock files in the test source directories. Subsequent attempts to restart the TCC
may give error messages saying that a lock file was encountered. At this point TCC may
suspend the build. It may be necessary to find and remove files or directories named
tet_lock before continuing.
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10.2 Cleaning modified scenarios using the TET

10.2.1 Format of the scenario file

Refer to the earlier section "Building modified scenarios using the TET".

10.2.2 Modifying the scenario file

Refer to the earlier section "Building modified scenarios using the TET".

10.2.3 Creating new scenario files

A new scenario file may be created in the directory $TET_ROOT/xtest. The TCC will
use this scenario file instead of the file $TET_ROOT/xtest/tet_scen if it is passed
via the -s option. For example

cd $TET_ROOT/xtest

tcc -c -s scenario_file [ -j journal_file ] [ -y string ] xtest all

10.3 Cleaning tests without using the TET

See section 11, entitled "Building, executing and reporting tests without using the TET".

10.4 Cleaning tests built in space-saving format

It is possible to clean the tests in the X Test Suite which were previously built in space-
saving format.

10.4.1 Cleaning tests in space-saving format using the TET

A scenario named linkbuild is provided in a scenario file named link_scen in the
directory $TET_ROOT/xtest. This enables the TCC to clean the space-saving executable
files and remove all the required links for each test set in each section of the X Test Suite.
The -y option allows a particular space-saving executable and its links for a single section
to be removed.

Execute the command:

cd $TET_ROOT/xtest

tcc -c -s link_scen [ -j journal_file ] [ -y string ] xtest linkbuild

This command will execute the TET clean tool in the TET configuration variable
TET_CLEAN_TOOL (which is normally pclean), in the top level directory of each section
of the test suite.

10.4.2 Cleaning tests in space-saving format without using the TET

This section describes how to clean the space-saving executable files for a particular
section of the X Test Suite directly without using the TET.

This can be simply done by calling pclean in the required directory. For example, to
clean all the space-saving executable files for section 5 of the X Test Suite, execute the
command:

cd $TET_ROOT/xtest/tset/CH05

pclean
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11. Building, executing and reporting tests without using the TET

11.1 Building tests

An individual test set can be rebuilt without the need to use the build mode of the TCC.
This is done by executing pmake directly, rather than as a TET build tool.

This is a useful facility for building a single test set after a previous build has failed.

The build configuration parameters used by pmake are obtained from a file named
$TET_BUILDCONFIG, or, if TET_BUILDCONFIG is not set in your environment, from
the file named $TET_ROOT/xtest/tetbuild.cfg.

The pmake command should be executed in the directory containing the source code for
the test set which is to be rebuilt. For more details of the names of the directories
containing the source code for the test sets, refer to appendix A.

For example

cd $TET_ROOT/xtest/tset/CH05/stclpmsk

pmake

No journal file is created when pmake is executed directly.

The test set can also be rebuilt using the command

pmake Test

If there is a macro version of the Xlib function, this may be rebuilt using the command

pmake MTest

11.2 Executing tests

An individual test set can be executed without the need to use the execute mode of the
TCC. This is done by executing a shell script pt.

This is a useful facility for executing a single test set repeatedly when investigating a
particular test result.

The execution configuration parameters used by pt are obtained from a file named
$TET_CONFIG, or, if TET_CONFIG is not set in your environment, from the file named
$TET_ROOT/xtest/tetexec.cfg.

The pt command is a shell script, which attempts to execute the binary file named Test
in the current directory. If the file Test is not found, the pt command attempts to
execute the space-saving executable file built in that directory.

The pt command should be executed in the directory containing the test set which has
been built. Unless you have manually installed the test set elsewhere, this will be the
directory containing the source code for the test set. For more details of the names of the
directories containing the source code for the test sets, refer to appendix A.

For example

cd $TET_ROOT/xtest/tset/CH05/stclpmsk

pt
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A TET results file is created when pt is executed directly. This is a file named
tet_xres located in the directory in which the test was executed.

There are a number of options which may be passed to pt which alter the manner in
which the test set is executed.

Execute pt as follows:

pt [ -v XT_VARIABLE_NAME ] [ -d display ] [-i IC_list ] [ -p ] [ -w ]

[ -P ] [ -D ] [ -x debug_level ] [ -g ] [ -m ]

-v XT_VARIABLE_NAME=Value
Modifies the value of the execution configuration parameter named
XT_VARIABLE_NAME, assigning it a value of Value.

-d display
Sets the display string to be used for the test.
The default value is taken from the environment variable DISPLAY, or, if this is not
set, from the execution configuration parameter XT_DISPLAY.

-i IC_list
The invocable components executed will be those specified in IC_list.

Each assertion in the X Test Suite has separate test code, which is known as a test
purpose. We hav e arranged that each test purpose is also a separately invocable
component, and that the invocable component number is identical to the test
purpose number.

The invocable component list consists of one or more elements separated by
commas. Each element is either an invocable component number or a range of
invocable component numbers separated by a dash.

This is useful for quickly executing a particular test purpose of interest for
example:

pt -i 37

This is also useful for executing all test purposes except one known to cause a
system error. For example:

pt -i 1-36,38-57

Note that the placement of windows used by the test suite may differ when an
earlier test purpose is not executed. It is intended that test purposes produce the
same results regardless of window placement.

-p
This option is equivalent to setting the execution configuration parameter
XT_DEBUG_PIXMAP_ONLY to Yes.

-w
This option is equivalent to setting the execution configuration parameter
XT_DEBUG_WINDOW_ONLY to Yes.

-P
This option is equivalent to setting the execution configuration parameter
XT_DEBUG_PAUSE_AFTER to Yes.
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-D
This option is equivalent to setting the execution configuration parameter
XT_DEBUG_DEFAULT_DEPTHS to Yes.

-x debug_level
This option is equivalent to setting the execution configuration parameter
XT_DEBUG to debug_level.

-g
The binary file pvgen will be executed instead of the binary file Test. This
option should not be used, since binary files named pvgen are only used in the
development environment at UniSoft when generating known good image files.

-m
The binary file MTest will be executed instead of the binary file Test. Files
named MTest contain tests for the macro version of an Xlib function.

Note that pt creates a temporary file CONFIG in the current directory containing the
configuration parameters, so write permission is required to this file (or if no file is there,
to the current directory).

Note also that the binary file Test creates a temporary file .tmpresfd in the current
directory containing the configuration parameters, so write permission is required to this
file.

11.3 Reporting tests

The TET results file produced for an individual test set can be formatted using the basic
report writer rpt, which is described in more detail in the section entitled "Report
writer". The argument -f tet_xres formats the contents of the tet_xres file.

For convenience, a separate report writer prp is provided, which is identical to rpt,
except that the default file used is tet_xres in the current directory.

This is a useful facility for quickly formatting the results from the execution of a test set,
and looking at the summary of the result codes for each test purpose executed.

The prp command should be executed in the directory containing the TET results file
named tet_xres. Unless you have manually installed and executed the test set
elsewhere, this will be the directory containing the source code for the test set. For more
details of the names of the directories containing the source code for the test sets, refer to
appendix A.

For example

cd $TET_ROOT/xtest/tset/CH05/stclpmsk

prp

11.4 Cleaning tests

An individual test set can be cleaned without the need to use the clean mode of the TCC.
This is done by executing pclean directly, rather than as a TET clean tool.

The clean configuration parameters used by pclean are obtained from a file named
$TET_CLEANCONFIG, or, if TET_CLEANCONFIG is not set in your environment,
from the file named $TET_ROOT/xtest/tetclean.cfg.
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The pclean command should be executed in the directory containing the test set which
was built. For more details of the names of the directories containing the source code for
the test sets, refer to appendix A.

For example

cd $TET_ROOT/xtest/tset/CH05/stclpmsk

pclean

No journal file is created when pclean is executed directly.
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12. Appendix A - Contents of X Version 11 Release 6.1

This section describes the contents of the directories in the TET_ROOT directory which
are supplied in this release of the X Test Suite. The revised X Test Suite has been
developed from the T7 X Test Suite. This section therefore also explains how the
arrangement of the revised X Test Suite compares with the T7 X Test Suite.

12.1 tet

This contains the source files and include files needed to build the Test Environment
Toolkit (TET). The contents of the subdirectories are as follows:

12.1.1 tet/src

This contains the source files for the TET.

12.1.2 tet/inc

This contains the include files for the TET.

12.1.3 tet/lib

This contains the libraries and object files when the TET has been built.

12.1.4 tet/bin

This should be empty since the TET utilities will be copied into
$TET_ROOT/xtest/bin, rather than this directory, when using the modified
Makefiles supplied with the TET.

12.1.5 tet/doc

This contains the release notes and man pages for the TET.

12.1.6 tet/demo

This contains a demonstration program for the TET.

12.2 xtest

This contains the tests included in the revised X test suite which are stored as a complete
TET test suite. This includes all necessary configuration files and scenario files to enable
you to use the TET following the instructions in the documentation.

12.3 xtest/bin

This contains commands you will need to install, configure, build and execute the X Test
Suite. After installation, this directory contains shell script commands. After
configuration and building the X Test Suite, this directory also contains executable
programs built for your system.

12.4 xtest/doc

This contains the documentation. It contains this user guide, the programmers guide and
the release notes. These are supplied in troff(1) format requiring the mm macro package,
and also in PostScript format. It also contains a template for error reports and a
description of how to submit them.
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It also contains a file paper.mm, which is a copy of the file
Xproto_verf/doc/paper.ms originally supplied in the T7 X Test Suite, converted
to use the mm macro package. This file contains a paper entitled "An Approach to
Testing X Window System Servers at a Protocol Level".

This is a technical paper, which defines in outline terms the areas of the X Window
System server which should be tested at the X Protocol level rather than the Xlib level.

The approach recommended in this paper, and adopted in the design of the T7 X Test
Suite, has been maintained in the revised X Test Suite. The paper explains the choice of
test cases and division of tests between the X Protocol tests and Xlib tests.

Before the revision of the X Test Suite, UniSoft recommended that this paper should be
left "as is". As a result, some sections of this paper are out of date in that they refer to
development schedules for a previous software development project, which have now
been superseded with the production of the revised X Test Suite.

12.5 xtest/fonts

This contains test fonts which should be installed using the instructions in this user guide.
It also contains a software library describing the fonts which is used by the tests for text
drawing.

12.6 xtest/include

This contains include files for the software in the xtest/src and xtest/tset directories.

12.7 xtest/lib

This contains libraries and other common software which are used by the tests in the
xtest/tset directory. The libraries are built using the instructions in this user guide.

12.8 xtest/results

This is an empty directory which is used by the TET to store journal files produced when
executing the X Test Suite.

12.9 xtest/src

This contains the source for the libraries and utilities. These are built using the
instructions in this user guide.

12.10 xtest/tset

This contains the source for the tests for sections 2 to 10 of the X11R4 Xlib
specifications, in directories CH02 to CH10. These are built using the instructions in this
user guide. In the rest of this document, these are refered to as the "Xlib tests".

Each of the directories CH02 to CH10 contains further subdirectories which are known as
test set directories. Each of these contain all the test code for a single Xlib function. The
name of the directory is derived from the name of the Xlib function by a scheme which is
described in appendix B.

So, for example for XSetClipMask we have the following:

tset/CH05/stclpmsk

tset/CH05/stclpmsk/stclpmsk.m
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The file stclpmsk.m is the source file, which is also known as a dot-m file. The format
of the dot-m file is described further in the "Programmers Guide".

The Xlib tests are designed to accomplish the following:

1. Test the ability of the Xlib function to behave as specified in the X11R4 Xlib
specifications, in situations where no X Protocol error should be generated. This is
tested by a series of separate tests known, as "test purposes", each of which is
designed to test a single statement in the Xlib specifications. The statement which
is tested is contained in an "assertion", which is also contained in the dot-m file,
and precedes the test code for that test purpose.

2. Test the ability of the Xlib function to produce the expected X Protocol errors in
specified situations. This is tested in further test purposes, each preceded in the
dot-m file by an assertion describing the situation which should produce the error.

12.11 xtest/tset/XPROT O

This contains the source for the touch tests for the X Protocol (version 11). These are
built using the instructions in this user guide. In the rest of this document, these are
refered to as the "X Protocol tests".

These tests were in a separate test suite in the T7 X Test Suite, which was located in a
directory Xproto_verf. This included separate documentation, drivers, parameter files,
include files and libraries. In the revised X Test Suite, the directory XPROT O only
contains the source of the tests - the other items are integrated within the X Test Suite as
described in this user guide.

The directory XPROT O contains further subdirectories which are known as test set
directories. The structure of test set directories is exactly as for the Xlib tests, described
in the previous section.

The X Protocol tests tests are designed to accomplish the following:

1. Test the ability of the X Window System server to accept all legal message types
and respond appropriately.

2. Ensure that the server capabilities which Xlib testing depends on work in the
simplest cases.

3. Test that the X server adheres to the canonical byte stream of the X Protocol,
independent of the host byte sex or compiler structure packing.

For further details of the choice of test cases and division of tests between the X Protocol
tests and Xlib tests, refer to the document entitled "An Approach to Testing X Window
System Servers at a Protocol Level" contained in file xtest/doc/paper.mm.
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13. Appendix B - File naming scheme

A file naming scheme has been devised which is for naming the directories containing
dot-m files and the dot-m files themselves.

The file naming scheme converts from an X Window System name to an abbreviated
name. This is done as follows:

— Remove leading X.

— Replace:

Background -> Bg
Subwindow -> Sbwn
String -> Str
Window -> Wdw

— Remove all lowercase vowels aeiou.

— Truncate to 10 chars. We hav e already checked that truncation to ten characters
still gives uniqueness.

— If the string before truncation ended in "16" then force truncated
string to end in "16".

— convert to lowercase.

— add ".m" suffix to get name of source file containing C code, assertions
and strategies.
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14. Appendix C - Format of the TET journal file

This appendix describes the manner in which the X Test Suite uses some of the TET
journal file facilities. The format of the TET journal file is not fully described here - only
the main features used by the X Test Suite are described. In a future release of the X Test
Suite the format is expected to be described fully in the TET documentation.

Journal files are produced by the TCC during the build and execute stages.

The journal file produced during the execute stage contains two basic sections:

1. Details of the configuration parameters and environment in which the tests were
executed. This may also be preceded by build configuration parameters and/or
followed by clean configuration parameters, if the TCC was inv oked in build-
execute-clean mode.

2. Details of the test results. This includes the test result codes and test information
messages output by the test suite.

Each line in the second section of a journal file is made up from three components
separated by a vertical bar:

1. Message type. There is a unique numeric code for each message type which is
always the first field on a line.

2. Message parameters. These contain serial number and similar information.

3. Message area. The format of this area is specific to the Message Type.

An example of the second section is as follows:

10|53 /tset/CH02/vndrrls/vndrrls 13:41:12|TC Start, scenario ref 85-1, ICs {all}

15|53 1.9 1|TCM Start

520|53 0 7457 1 1|TRACE:NAME: XVendorRelease

400|53 1 1 13:41:14|IC Start

200|53 1 13:41:14|TP Start

520|53 1 7457 1 1|REPORT:XVendorRelease() returned 5000 instead of 1.

220|53 1 1 13:41:14|FAIL

410|53 1 1 13:41:14|IC End

80|53 0 13:41:15|TC End

This consists of a block of information for each test set executed which contains the
following lines:

1. Message Type 10 - Test Case Start (TC Start)
A single message indicating that the Test Case Controller (the part of the TET
which executes test sets) is about to execute a test set. This also indicates the start
of the results for this test set (which in TET terminology is known as a test case).
This line indicates the name of the test set obtained from the scenario file.

2. Message Type 15 - Test Case Manager Start (TCM Start)
A single message indicating that the Test Case Manager (the part of the TET
which calls the test purposes) has started executing.

3. Each assertion in the X Test Suite has separate test code, which is known as a test
purpose. We hav e arranged that each test purpose is also a separately invocable
component, and that the invocable component number is identical to the test
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purpose number. For each test purpose these lines follow:

1. Message Type 400 - Invocable Component Start (IC Start)
The second field of the Message Parameters gives the IC number.

2. Message Type 200 - Test Purpose Start (TP Start)
The second field of the Message Parameters gives the number of the test
purpose within the test set.

3. Message Type 520 - Test Case Information
The second field of the Message Parameters gives the number of the test
purpose within the test set.
The Message Area contains a text message output by the X Test Suite - the
possible types of message are described further in appendix D
"Interpreting test results" in the section entitled "Test information
messages".

4. Message Type 220 - Test Purpose Result
The second field of the Message Parameters gives the number of the test
purpose within the test set.
The Message Area contains the test result code - the possible test result
codes are described further in appendix D "Interpreting test results" in the
section entitled "Test result codes".

5. Message Type 410 - Invocable Component End (IC End)
The second field of the Message Parameters gives the IC number.

4. Message Type 80 - Test Case End (TC End)
A single message indicating the end of the results for this test set (which in TET
terminology is known as a test case).
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15. Appendix D - Interpreting test results

This section includes information describing the significance of the test result codes and
the accompanying test information messages that may appear in a TET journal file.

15.1 Categorisation of assertions

The test result codes which are output for each test purpose are dependent on the category
of the assertion.

The model for the categorisation of assertions which is used in the X Test Suite is
described in POSIX.3.

There are four categories of assertions described by POSIX.3 which are designated A, B,
C and D.

If the assertion tests a conditional feature, it is categorised as type C or D, otherwise it is
categorised as type A or B.

If the assertion is classified as an "extended assertion", it is categorised as type B or D.
Otherwise it is categorised as type A or C and is known as a "base assertion".

Tests are always required for base assertions. Tests are not required for extended
assertions, but should be provided if possible. There are a number of "extended
assertions" for which tests have been written in the X Test Suite. Extended assertions are
used to describe features that may be difficult to test conclusively.

Base Assertion Extended Assertion
Required Feature A B

Conditional Feature C D

15.2 Test result codes

The following test result codes may be found within the TET journal file. These will be
found in Test Purpose Result lines with Message Type 220 (described in appendix C).

The reason for any result codes NORESULT, UNRESOLVED and UNINITIATED should be
determined and resolved.

PASS The implementation passed the test for the corresponding assertion.

FAIL The implementation failed the test for the corresponding assertion.

UNRESOLVED The test for the corresponding assertion commenced, but was unable to
establish the required conditions to complete all required stages of the
test. The reasons for this should be investigated and if necessary the
test rerun.

In some tests, reliance is made on the successful behaviour of another
area of the X Window System. Where this reliance is made, and that
area of the X Window System does not behave as expected, a result
code UNRESOLVED may occur. The test information messages should
indicate the area of the underlying problem. It may be necessary to
look at the test results for that area first and investigate and resolve the
underlying problem before re-running the UNRESOLVED tests.

Tests which give a result code of UNRESOLVED and the message
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"Path check error" normally contain programming errors. The test
reached the point at which a PASS result would be assigned, but the
number of check points passed in executing the test code differs from
the expected number.

Tests which give a result code of UNRESOLVED and the message
"No CHECK marks encountered" may be due to programming errors.
The test reached the point at which a PASS result would be assigned,
but no check points had been passed. This can also occur when you
execute the tests using debug options. For example, the message
occurs when you execute tests which normally loop over windows and
pixmaps and set XT_DEBUG_PIXMAP_ONLY=Yes or
XT_DEBUG_WINDOW_ONLY=Yes or
XT_DEBUG_DEFAULT_DEPTHS=Yes or
XT_DEBUG_VISUAL_IDS=Yes.

NOTINUSE Although there is an assertion within the test set, there is no specific
test provided for the assertion. This might be because the assertion is
tested adequately as part of the test for another assertion, or because
the assertion has been automatically included into a test set in which it
is not applicable.

In either case, tests which report the result code NOTINUSE do not
need to be investigated further.

UNSUPPORTED This result code may only be used for assertions in category C or D
(conditional assertions).

The implementation does not support some optional feature of the
X Window System, which is needed to test the corresponding
assertion. In this case, the assertion will normally make clear what
optional feature is required, and there will be an accompanying test
information message describing the feature which was found to be
unsupported.

UNTESTED This result code may only be used for assertions in category B or D
(extended assertions).

The implementation could not be conclusively tested to determine the
truth of the corresponding assertion.

Note that this does not mean that no testing was performed in the
X Test Suite. There are a number of "extended assertions" for which
we have provided tests where possible (to test some likely problem
areas, for example).

UNINITIATED The test for the corresponding assertion could not commence due to a
problem in an earlier test purpose or an initialisation routine.

Tests which produce this result code should be resolved as for those
reporting UNRESOLVED.

NORESULT Each test purpose should output a test result code before completing.
This special result code will be inserted by the TET in the journal file,
if the test purpose did not output a test result code. This indicates a
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major fault during the execution of the test set which should be
investigated.

WARNING The implementation passed the test for the corresponding assertion.
Whilst the behaviour of the implementation was found to be
acceptable, it behaves in a manner which is not recommended in the
X11 specification on which the assertion is based.

FIP The contents of the journal file must be examined by hand to
determine whether the implementation passed the test for the
corresponding assertion. This is used for testing functions which
produce output whose correctness cannot be easily determined
automatically by the test suite.

15.3 Test information messages

There are four types of test information messages which are output by the X Test Suite.
Each one results in a TET journal file line with Message Type "Test Case Information"
(520), and with the Message Area beginning with one of the following keywords:

REPORT This keyword is used to report the reason for any test result codes
whch are other than PASS. A warning message is printed by the report
writer rpt, if a test information message of type REPORT is given in a
test purpose which produced a test result code PASS.

CHECK This keyword is used to record the passing of a particular checkpoint
in the test suite code. These messages contain the checkpoint number
within the test purpose, and the line number within the source code.

These messages are not output to the journal file if the execution
configuration parameter XT_OPTION_NO_CHECK is set to Yes. This
option can reduce the size of the journal file considerably.

TRACE This keyword is used for any messages describing the state of the test
being executed which are not failure messages.

When running the X Protocol tests, messages with this keyword are
output to the journal file, to describe briefly the interaction between the
X server and the test program.

These messages are not output to the journal file, if the execution
configuration parameter XT_OPTION_NO_TRACE is set to Yes. This
option can reduce the size of the journal file considerably.

DEBUG This keyword is used for debug messages inserted during the
development of the X Test Suite.

When running the X Protocol tests, messages with this keyword are
output to the journal file, when the debug level is greater than zero, to
describe in detail the interaction between the X server and the test
program. This includes the contents of requests, replies and events.

This is output if the value of the execution configuration parameter
XT_DEBUG is greater than or equal to the level of the debug message.
XT_DEBUG may be set from 0 to 3.
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16. Appendix E - Outline of Test Environment Toolkit

The "Test Environment Toolkit" is a software tool developed by X/Open8, UNIX
International (UI)9, and the Open Software Foundation (OSF)10. The project which
produced this software and the associated interface specifications was also known as
Project Phoenix.

The TET consists of a user interface program known as the Test Case Controller (TCC).
This enables test software to be built and executed. The TCC uses configuration files to
specify the environment for both the build and execute operations. The TCC also uses a
scenario file to control which tests to build or execute.

The TCC produces a journal file which is intended to be formated by a test suite specific
report writing program.

The TET also includes an Application Programming Interface (API) Part of the API is the
Test Case Manager (TCM). This includes a main() function which calls user supplied
test functions. The API also includes a library of functions to manage the test functions
and perform output operations to the journal file in a structured fashion.

Since the developers of the TET have indicated a commitment to develop software test
suites that execute within this environment, the TET can be seen as an emerging de facto
standard environment for test suite execution.

During stage one of the X Test Suite development project we identified that the TET
provides features which are required by the revised test suite.

For this reason we have dev eloped the revised test suite within the TET environment, and
supplied a copy of the TET with the revised test suite.

Release 1.9 of the TET was issued by the developers during March 1992, and is included
in this release of the X Test Suite. The software is complete in that the functionality is
stable and the implementation agrees with the TET specification. Documentation
including release notes and man pages for the TET utilities, are included in this release of
the X Test Suite. However, this release does not contain a Programmers Guide or Users
Guide. These are under development by UNIX International, but are not complete at the
time of this release, and so are not part of the current version of the TET.

8. X/Open is a trademark of the X/Open Company, Ltd. in the U.K. and other countries.

9. UI is a trademark of UNIX International.

10. Open Software Foundation, OSF and OSF/1 are trademarks of the Open Software Foundation, Inc.
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17. Appendix F - Glossary

assertion
A statement of functionality for an element of the X Window System, phrased such
that it will be true for a system conforming to the X Window System specifications.
An example would be a test description phrased according to the requirements of
POSIX.3.

assertion test
Synonymous with test purpose.

base assertion
An assertion for which a test suite must provide an assertion test. Every assertion
that is not an extended assertion is a base assertion.

element
A particular X Window System interface such as an Xlib function, header file or
X11 Procotol.

extended assertion
An assertion for which a test suite is not required to provide an assertion test. An
assertion test should still be provided if possible.

Reasons why a test suite is not required to provide a test are given in appendix A of
the Programmers Guide.

POSIX.1
Part one of the IEEE POSIX 1003 standards, the document† entitled System
Application Program Interface (API) [C language]. Also known as P1003.1.

POSIX.3
Part three of the IEEE POSIX 1003 standards, the document† entitled Test Methods
for Measuring Conformance to POSIX. Also known as P1003.3.

Project Phoenix
Synonymous with TET.

SVID
System V Interface Definition.

TCC
The Test Case Controller. This is part of the TET. This is a user interface program
which enables the test software to be executed. See appendix E for more details.

TCM
The Test Case Manager. This is part of the TET. This is an object file containing a
main() function which calls user supplied test functions. See appendix E for more
details.

TET
The "Test Environment Toolkit". This is a software tool which provides a framework
within which tests may be developed and executed. More information is given in
appendix E.

† Obtainable from Publication Sales, IEEE Service Center, P.O. Box 1331, 445 Hoes Lane, Piscataway,
NJ 08854-1331, (201) 981-0060

- 57 -



User Guide for the X Test Suite

test case
Synonymous with test set.

test description
The description of a particular test to be performed on an element. This is presented
in functional terms and describes precisely what aspect of the X Window System is
to be tested for that element. An assertion is an example of a test description, but
the reverse is not the case.

test program
Synonymous with test set.

test purpose
The software which tests the conformance of an implementation of the X Window
System to an assertion.

test set
The software containing all the test purposes for an element.

test strategy
A description of the design and method used to implement a test purpose. This
should say how a test purpose is implemented rather than what feature is being
tested.

XPG
The X/Open Portability Guide.

Xlib tests
These are the tests for sections 2 to 10 of the X11R4 Xlib specifications. They are
stored in subdirectories of the directories CH02 to CH10 (which are to be found in
the directory $TET_ROOT/xtest/tset).

X Protocol tests
These are the touch tests for the X Protocol (version 11). They are stored in
subdirectories of the directory XPROTO (which is to be found in the directory
$TET_ROOT/xtest/tset).
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